Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -17,4 +17,5 @@ CRAN-SUBMISSION
paper/data
.idea/
.vsc/
paper/data
paper/data
.vscode
18 changes: 17 additions & 1 deletion R/LearnerTorch.R
Original file line number Diff line number Diff line change
Expand Up @@ -532,7 +532,20 @@ LearnerTorch = R6Class("LearnerTorch",
"worker_packages"
)
args = param_vals[names(param_vals) %in% dl_args]
for(param_name in c("sampler", "batch_sampler")){

ok = sum(is.null(args$sampler), is.null(args$batch_sampler), is.null(args$batch_size)) == 2L

if (!ok) {
stopf("Provide either 'sampler', 'batch_sampler', or 'batch_size'.")
}

if (is.null(args$batch_size)) {
if (!is.null(args$shuffle) || !is.null(args$drop_last)) {
stopf("'shuffle' and 'drop_last' are only allowed when 'batch_size' is provided.")
}
}

for (param_name in c("sampler", "batch_sampler")){
param_val <- args[[param_name]]
if (!is.null(param_val)) {
# instantiate these params which should be classes.
Expand All @@ -542,6 +555,9 @@ LearnerTorch = R6Class("LearnerTorch",
invoke(dataloader, dataset = dataset, .args = args)
},
.dataloader_predict = function(dataset, param_vals) {
if (is.null(param_vals$batch_size)) {
stop("'batch_size' must be provided for prediction.")
}
param_vals_test = insert_named(param_vals, list(shuffle = FALSE, drop_last = FALSE))
private$.dataloader(dataset, param_vals_test)
},
Expand Down
10 changes: 7 additions & 3 deletions R/paramset_torchlearner.R
Original file line number Diff line number Diff line change
Expand Up @@ -71,10 +71,14 @@ paramset_torchlearner = function(task_type, jittable = FALSE) {
patience = p_int(lower = 0L, tags = c("train", "required"), init = 0L),
min_delta = p_dbl(lower = 0, tags = c("train", "required"), init = 0),
# dataloader parameters
batch_size = p_int(tags = c("train", "predict", "required"), lower = 1L),
batch_size = p_int(tags = c("train", "predict"), lower = 1L),
shuffle = p_lgl(tags = "train", default = FALSE, init = TRUE),
sampler = p_uty(tags = c("train", "predict")),
batch_sampler = p_uty(tags = c("train", "predict")),
sampler = p_uty(tags = c("train", "predict"), custom_check = crate(function(x) {
checkmate::check_class(x, "torch_sampler")
})),
batch_sampler = p_uty(tags = c("train", "predict"), custom_check = crate(function(x) {
checkmate::check_class(x, "torch_sampler")
})),
num_workers = p_int(lower = 0, default = 0, tags = c("train", "predict")),
collate_fn = p_uty(tags = c("train", "predict"), default = NULL),
pin_memory = p_lgl(default = FALSE, tags = c("train", "predict")),
Expand Down
Loading