Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add cli scripts to quickly run a calculation #69

Merged
merged 21 commits into from
Dec 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@ repos:
rev: v4.2.0
hooks:
- id: end-of-file-fixer
- id: fix-encoding-pragma
- id: mixed-line-ending
- id: trailing-whitespace
- id: check-json
Expand All @@ -24,4 +23,4 @@ repos:
rev: 6.0.0
hooks:
- id: flake8
args: ["--max-line-length=88", "--ignore=E203,W503"]
args: ["--max-line-length=88", "--ignore=E203,W503"]
4 changes: 3 additions & 1 deletion src/mattersim/applications/relax.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from ase.optimize import BFGS, FIRE
from ase.optimize.optimize import Optimizer
from ase.units import GPa
from deprecated import deprecated


class Relaxer(object):
Expand Down Expand Up @@ -55,7 +56,7 @@ def relax(
fmax: float = 0.01,
params_filter: dict = {},
**kwargs,
) -> Atoms:
) -> Tuple[bool, Atoms]:
"""
Relax the atoms object.
Expand Down Expand Up @@ -108,6 +109,7 @@ def relax(
return converged, atoms

@classmethod
@deprecated(reason="Use cli/applications/relax_structure.py instead.")
def relax_structures(
cls,
atoms: Union[Atoms, Iterable[Atoms]],
Expand Down
Empty file added src/mattersim/cli/__init__.py
Empty file.
Empty file.
114 changes: 114 additions & 0 deletions src/mattersim/cli/applications/moldyn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
import os
import re
import uuid
from collections import defaultdict
from typing import List

import pandas as pd
from ase import Atoms
from ase.io import read
from loguru import logger
from pymatgen.io.ase import AseAtomsAdaptor

from mattersim.applications.moldyn import MolecularDynamics


def moldyn(
atoms_list: List[Atoms],
*,
temperature: float = 300,
timestep: float = 1,
steps: int = 1000,
ensemble: str = "nvt_nose_hoover",
logfile: str = "-",
bi-ran marked this conversation as resolved.
Show resolved Hide resolved
loginterval: int = 10,
trajectory: str = None,
bi-ran marked this conversation as resolved.
Show resolved Hide resolved
taut: float = None,
work_dir: str = str(uuid.uuid4()),
save_csv: str = "results.csv.gz",
**kwargs,
) -> dict:
moldyn_results = defaultdict(list)

for atoms in atoms_list:
# check if the atoms object has non-zero values in the lower triangle
# of the cell. If so, the cell will be rotated and permuted to upper
# triangular form. This is to avoid numerical issues in the MD simulation.
print(atoms.cell.array)
if any(atoms.cell.array[2, 0:2]) or atoms.cell.array[1, 0] != 0:
logger.warning(
"The lower triangle of the cell is not zero. "
"The cell will be rotated and permuted to upper triangular form."
)

# The following code is from the PR
# https://gitlab.com/ase/ase/-/merge_requests/3277.
# It will be removed once the PR is merged.
# This part of the codes rotates the cell and permutes the axes
# such that the cell will be in upper triangular form.

from ase.build import make_supercell

_calc = atoms.calc
logger.info(f"Initial cell: {atoms.cell.array}")

atoms.set_cell(atoms.cell.standard_form()[0], scale_atoms=True)

# Permute a and c axes
atoms = make_supercell(atoms, [[0, 0, 1], [0, 1, 0], [1, 0, 0]])

atoms.rotate(90, "y", rotate_cell=True)

# set the lower triangle of the cell to be exactly zero
# to avoid numerical issues
atoms.cell.array[1, 0] = 0
atoms.cell.array[2, 0] = 0
atoms.cell.array[2, 1] = 0

logger.info(f"Cell after rotation/permutation: {atoms.cell.array}")
atoms.calc = _calc

if not os.path.exists(work_dir):
os.makedirs(work_dir)

md = MolecularDynamics(
atoms,
ensemble=ensemble,
temperature=temperature,
timestep=timestep,
loginterval=loginterval,
logfile=os.path.join(work_dir, logfile),
trajectory=os.path.join(work_dir, trajectory),
taut=taut,
)
md.run(steps)

# parse the logfile

# Read the file into a pandas DataFrame
df = pd.read_csv(
os.path.join(work_dir, logfile),
sep="\\s+",
names=["time", "temperature", "energy", "pressure"],
skipfooter=1,
)
df.columns = list(
map(lambda x: re.sub(r"\[.*?\]", "", x).strip().lower(), df.columns)
)
traj = read(os.path.join(work_dir, trajectory), index=":")
print(df.shape)
print(len(traj))
structure_list = [AseAtomsAdaptor.get_structure(atoms) for atoms in traj]

# Add the structure list to the DataFrame
df["structure"] = [structure.to_json() for structure in structure_list]

# Print the DataFrame
print(df)

# Save the DataFrame to a CSV file
df.to_csv(os.path.join(work_dir, save_csv))

moldyn_results = df.to_dict()

return moldyn_results
142 changes: 142 additions & 0 deletions src/mattersim/cli/applications/phonon.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
import os
import uuid
from collections import defaultdict
from typing import List

import numpy as np
import pandas as pd
import yaml
from ase import Atoms
from loguru import logger
from pymatgen.core.structure import Structure
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm

from mattersim.applications.phonon import PhononWorkflow
from mattersim.cli.applications.relax import relax


def phonon(
atoms_list: List[Atoms],
*,
find_prim: bool = False,
work_dir: str = str(uuid.uuid4()),
save_csv: str = "results.csv.gz",
amplitude: float = 0.01,
supercell_matrix: np.ndarray = None,
qpoints_mesh: np.ndarray = None,
max_atoms: int = None,
enable_relax: bool = False,
**kwargs,
) -> dict:
"""
Predict phonon properties for a list of atoms.
Args:
atoms_list (List[Atoms]): List of ASE Atoms objects.
find_prim (bool, optional): If find the primitive cell and use it
to calculate phonon. Default to False.
work_dir (str, optional): workplace path to contain phonon result.
Defaults to data + chemical_symbols + 'phonon'
amplitude (float, optional): Magnitude of the finite difference to
displace in force constant calculation, in Angstrom. Defaults
to 0.01 Angstrom.
supercell_matrix (nd.array, optional): Supercell matrix for constr
-uct supercell, priority over than max_atoms. Defaults to None.
qpoints_mesh (nd.array, optional): Qpoint mesh for IBZ integral,
priority over than max_atoms. Defaults to None.
max_atoms (int, optional): Maximum atoms number limitation for the
supercell generation. If not set, will automatic generate super
-cell based on symmetry. Defaults to None.
enable_relax (bool, optional): Whether to relax the structure before
predicting phonon properties. Defaults to False.
"""
phonon_results = defaultdict(list)

for atoms in tqdm(
atoms_list, total=len(atoms_list), desc="Predicting phonon properties"
):
if enable_relax:
relaxed_results = relax(
[atoms],
constrain_symmetry=True,
work_dir=work_dir,
save_csv=save_csv.replace(".csv", "_relax.csv"),
)
structure = Structure.from_str(relaxed_results["structure"][0], fmt="json")
_atoms = AseAtomsAdaptor.get_atoms(structure)
_atoms.calc = atoms.calc
atoms = _atoms
ph = PhononWorkflow(
atoms=atoms,
find_prim=find_prim,
work_dir=work_dir,
amplitude=amplitude,
supercell_matrix=supercell_matrix,
qpoints_mesh=qpoints_mesh,
max_atoms=max_atoms,
)
has_imaginary, phonon = ph.run()
phonon_results["has_imaginary"].append(has_imaginary)
# phonon_results["phonon"].append(phonon)
phonon_results["phonon_band_plot"].append(
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_phonon_band.png")
)
phonon_results["phonon_dos_plot"].append(
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_phonon_dos.png")
)
os.rename(
os.path.join(os.path.abspath(work_dir), "band.yaml"),
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_band.yaml"),
)
os.rename(
os.path.join(os.path.abspath(work_dir), "phonopy_params.yaml"),
os.path.join(
os.path.abspath(work_dir), f"{atoms.symbols}_phonopy_params.yaml"
),
)
os.rename(
os.path.join(os.path.abspath(work_dir), "total_dos.dat"),
os.path.join(os.path.abspath(work_dir), f"{atoms.symbols}_total_dos.dat"),
)
phonon_results["phonon_band"].append(
yaml.safe_load(
open(
os.path.join(
os.path.abspath(work_dir), f"{atoms.symbols}_band.yaml"
),
"r",
)
)
)
phonon_results["phonopy_params"].append(
yaml.safe_load(
open(
os.path.join(
os.path.abspath(work_dir),
f"{atoms.symbols}_phonopy_params.yaml",
),
"r",
)
)
)
phonon_results["total_dos"].append(
np.loadtxt(
os.path.join(
os.path.abspath(work_dir), f"{atoms.symbols}_total_dos.dat"
),
comments="#",
)
)

if not os.path.exists(work_dir):
os.makedirs(work_dir)

logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}")
df = pd.DataFrame(phonon_results)
df.to_csv(
os.path.join(work_dir, save_csv.replace(".csv", "_phonon.csv")),
index=False,
mode="a",
)
return phonon_results
98 changes: 98 additions & 0 deletions src/mattersim/cli/applications/relax.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
import os
import uuid
from collections import defaultdict
from typing import List, Union

import pandas as pd
from ase import Atoms
from ase.constraints import Filter
from ase.optimize.optimize import Optimizer
from ase.units import GPa
from loguru import logger
from pymatgen.io.ase import AseAtomsAdaptor
from tqdm import tqdm

from mattersim.applications.relax import Relaxer


def relax(
atoms_list: List[Atoms],
*,
optimizer: Union[str, Optimizer] = "FIRE",
filter: Union[str, Filter, None] = None,
constrain_symmetry: bool = False,
fix_axis: Union[bool, List[bool]] = False,
pressure_in_GPa: float = None,
fmax: float = 0.01,
steps: int = 500,
work_dir: str = str(uuid.uuid4()),
save_csv: str = "results.csv.gz",
**kwargs,
) -> dict:
"""
Relax a list of atoms structures.
Args:
atoms_list (List[Atoms]): List of ASE Atoms objects.
optimizer (Union[str, Optimizer]): The optimizer to use. Default is "FIRE".
filter (Union[str, Filter, None]): The filter to use.
constrain_symmetry (bool): Whether to constrain symmetry. Default is False.
fix_axis (Union[bool, List[bool]]): Whether to fix the axis. Default is False.
pressure_in_GPa (float): Pressure in GPa to use for relaxation.
fmax (float): Maximum force tolerance for relaxation. Default is 0.01.
steps (int): Maximum number of steps for relaxation. Default is 500.
work_dir (str): Working directory for the calculations.
Default is a UUID with timestamp.
save_csv (str): Save the results to a CSV file. Default is `results.csv.gz`.
Returns:
pd.DataFrame: DataFrame containing the relaxed results.
"""
params_filter = {}

if pressure_in_GPa:
params_filter["scalar_pressure"] = (
pressure_in_GPa * GPa
) # convert GPa to eV/Angstrom^3
filter = "ExpCellFilter" if filter is None else filter
elif filter:
params_filter["scalar_pressure"] = 0.0

relaxer = Relaxer(
optimizer=optimizer,
filter=filter,
constrain_symmetry=constrain_symmetry,
fix_axis=fix_axis,
)

relaxed_results = defaultdict(list)
for atoms in tqdm(atoms_list, total=len(atoms_list), desc="Relaxing structures"):
converged, relaxed_atoms = relaxer.relax(
atoms,
params_filter=params_filter,
fmax=fmax,
steps=steps,
)
relaxed_results["converged"].append(converged)
relaxed_results["structure"].append(
AseAtomsAdaptor.get_structure(relaxed_atoms).to_json()
)
relaxed_results["energy"].append(relaxed_atoms.get_potential_energy())
relaxed_results["energy_per_atom"].append(
relaxed_atoms.get_potential_energy() / len(relaxed_atoms)
)
relaxed_results["forces"].append(relaxed_atoms.get_forces())
relaxed_results["stress"].append(relaxed_atoms.get_stress(voigt=False))
relaxed_results["stress_GPa"].append(
relaxed_atoms.get_stress(voigt=False) / GPa
)

logger.info(f"Relaxed structure: {relaxed_atoms}")

if not os.path.exists(work_dir):
os.makedirs(work_dir)

logger.info(f"Saving the results to {os.path.join(work_dir, save_csv)}")
df = pd.DataFrame(relaxed_results)
df.to_csv(os.path.join(work_dir, save_csv), index=False, mode="a")
return relaxed_results
Loading
Loading