Skip to content

Commit

Permalink
Merge branch 'master' into ci/yamllint-1
Browse files Browse the repository at this point in the history
  • Loading branch information
jameslamb authored Jan 2, 2025
2 parents 4adf207 + f3bd64a commit dfc4c7a
Show file tree
Hide file tree
Showing 9 changed files with 200 additions and 1,213 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ on:

jobs:
noResponse:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: lee-dohm/[email protected]
with:
Expand Down
23 changes: 23 additions & 0 deletions .github/workflows/release_drafter.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
name: Release Drafter

permissions:
contents: read

on:
push:
branches:
- master

jobs:
updateReleaseDraft:
permissions:
contents: write
pull-requests: read
runs-on: ubuntu-latest
steps:
- uses: release-drafter/[email protected]
with:
config-name: release-drafter.yml
disable-autolabeler: true
env:
GITHUB_TOKEN: ${{ github.token }}
56 changes: 0 additions & 56 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -252,54 +252,6 @@ if(USE_CUDA)
set(CMAKE_CUDA_STANDARD 11)
set(CMAKE_CUDA_STANDARD_REQUIRED ON)
endif()

set(
BASE_DEFINES
-DPOWER_FEATURE_WORKGROUPS=12
-DUSE_CONSTANT_BUF=0
)
set(
ALLFEATS_DEFINES
${BASE_DEFINES}
-DENABLE_ALL_FEATURES
)
set(
FULLDATA_DEFINES
${ALLFEATS_DEFINES}
-DIGNORE_INDICES
)

message(STATUS "ALLFEATS_DEFINES: ${ALLFEATS_DEFINES}")
message(STATUS "FULLDATA_DEFINES: ${FULLDATA_DEFINES}")

function(add_histogram hsize hname hadd hconst hdir)
add_library(histo${hsize}${hname} OBJECT src/treelearner/kernels/histogram${hsize}.cu)
set_target_properties(
histo${hsize}${hname}
PROPERTIES
CUDA_SEPARABLE_COMPILATION ON
CUDA_ARCHITECTURES ${CUDA_ARCHS}
)
if(hadd)
list(APPEND histograms histo${hsize}${hname})
set(histograms ${histograms} PARENT_SCOPE)
endif()
target_compile_definitions(
histo${hsize}${hname}
PRIVATE
-DCONST_HESSIAN=${hconst}
${hdir}
)
endfunction()

foreach(hsize _16_64_256)
add_histogram("${hsize}" "_sp_const" "True" "1" "${BASE_DEFINES}")
add_histogram("${hsize}" "_sp" "True" "0" "${BASE_DEFINES}")
add_histogram("${hsize}" "-allfeats_sp_const" "False" "1" "${ALLFEATS_DEFINES}")
add_histogram("${hsize}" "-allfeats_sp" "False" "0" "${ALLFEATS_DEFINES}")
add_histogram("${hsize}" "-fulldata_sp_const" "True" "1" "${FULLDATA_DEFINES}")
add_histogram("${hsize}" "-fulldata_sp" "True" "0" "${FULLDATA_DEFINES}")
endforeach()
endif()

include(CheckCXXSourceCompiles)
Expand Down Expand Up @@ -634,14 +586,6 @@ if(USE_CUDA)
CUDA_RESOLVE_DEVICE_SYMBOLS ON
)
endif()

# histograms are list of object libraries. Linking object library to other
# object libraries only gets usage requirements, the linked objects won't be
# used. Thus we have to call target_link_libraries on final targets here.
if(BUILD_CLI)
target_link_libraries(lightgbm PRIVATE ${histograms})
endif()
target_link_libraries(_lightgbm PRIVATE ${histograms})
endif()

if(WIN32)
Expand Down
2 changes: 1 addition & 1 deletion python-package/lightgbm/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -1248,7 +1248,7 @@ def predict(
if pred_leaf:
preds = preds.astype(np.int32)
is_sparse = isinstance(preds, (list, scipy.sparse.spmatrix))
if not is_sparse and preds.size != nrow:
if not is_sparse and (preds.size != nrow or pred_leaf or pred_contrib):
if preds.size % nrow == 0:
preds = preds.reshape(nrow, -1)
else:
Expand Down
72 changes: 38 additions & 34 deletions python-package/lightgbm/callback.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,14 @@ class CallbackEnv:
evaluation_result_list: Optional[_ListOfEvalResultTuples]


def _is_using_cv(env: CallbackEnv) -> bool:
"""Check if model in callback env is a CVBooster."""
# this import is here to avoid a circular import
from .engine import CVBooster

return isinstance(env.model, CVBooster)


def _format_eval_result(value: _EvalResultTuple, show_stdv: bool) -> str:
"""Format metric string."""
dataset_name, metric_name, metric_value, *_ = value
Expand Down Expand Up @@ -143,16 +151,13 @@ def _init(self, env: CallbackEnv) -> None:
)
self.eval_result.clear()
for item in env.evaluation_result_list:
if len(item) == 4: # regular train
data_name, eval_name = item[:2]
else: # cv
data_name, eval_name = item[1].split()
self.eval_result.setdefault(data_name, OrderedDict())
dataset_name, metric_name, *_ = item
self.eval_result.setdefault(dataset_name, OrderedDict())
if len(item) == 4:
self.eval_result[data_name].setdefault(eval_name, [])
self.eval_result[dataset_name].setdefault(metric_name, [])
else:
self.eval_result[data_name].setdefault(f"{eval_name}-mean", [])
self.eval_result[data_name].setdefault(f"{eval_name}-stdv", [])
self.eval_result[dataset_name].setdefault(f"{metric_name}-mean", [])
self.eval_result[dataset_name].setdefault(f"{metric_name}-stdv", [])

def __call__(self, env: CallbackEnv) -> None:
if env.iteration == env.begin_iteration:
Expand All @@ -163,15 +168,16 @@ def __call__(self, env: CallbackEnv) -> None:
"Please report it at https://github.com/microsoft/LightGBM/issues"
)
for item in env.evaluation_result_list:
# for cv(), 'metric_value' is actually a mean of metric values over all CV folds
dataset_name, metric_name, metric_value, *_ = item
if len(item) == 4:
data_name, eval_name, result = item[:3]
self.eval_result[data_name][eval_name].append(result)
# train()
self.eval_result[dataset_name][metric_name].append(metric_value)
else:
data_name, eval_name = item[1].split()
res_mean = item[2]
res_stdv = item[4] # type: ignore[misc]
self.eval_result[data_name][f"{eval_name}-mean"].append(res_mean)
self.eval_result[data_name][f"{eval_name}-stdv"].append(res_stdv)
# cv()
metric_std_dev = item[4] # type: ignore[misc]
self.eval_result[dataset_name][f"{metric_name}-mean"].append(metric_value)
self.eval_result[dataset_name][f"{metric_name}-stdv"].append(metric_std_dev)


def record_evaluation(eval_result: Dict[str, Dict[str, List[Any]]]) -> Callable:
Expand Down Expand Up @@ -304,15 +310,15 @@ def _gt_delta(self, curr_score: float, best_score: float, delta: float) -> bool:
def _lt_delta(self, curr_score: float, best_score: float, delta: float) -> bool:
return curr_score < best_score - delta

def _is_train_set(self, ds_name: str, eval_name: str, env: CallbackEnv) -> bool:
def _is_train_set(self, dataset_name: str, env: CallbackEnv) -> bool:
"""Check, by name, if a given Dataset is the training data."""
# for lgb.cv() with eval_train_metric=True, evaluation is also done on the training set
# and those metrics are considered for early stopping
if ds_name == "cv_agg" and eval_name == "train":
if _is_using_cv(env) and dataset_name == "train":
return True

# for lgb.train(), it's possible to pass the training data via valid_sets with any eval_name
if isinstance(env.model, Booster) and ds_name == env.model._train_data_name:
if isinstance(env.model, Booster) and dataset_name == env.model._train_data_name:
return True

return False
Expand All @@ -327,11 +333,13 @@ def _init(self, env: CallbackEnv) -> None:
_log_warning("Early stopping is not available in dart mode")
return

# get details of the first dataset
first_dataset_name, first_metric_name, *_ = env.evaluation_result_list[0]

# validation sets are guaranteed to not be identical to the training data in cv()
if isinstance(env.model, Booster):
only_train_set = len(env.evaluation_result_list) == 1 and self._is_train_set(
ds_name=env.evaluation_result_list[0][0],
eval_name=env.evaluation_result_list[0][1].split(" ")[0],
dataset_name=first_dataset_name,
env=env,
)
if only_train_set:
Expand Down Expand Up @@ -370,8 +378,7 @@ def _init(self, env: CallbackEnv) -> None:
_log_info(f"Using {self.min_delta} as min_delta for all metrics.")
deltas = [self.min_delta] * n_datasets * n_metrics

# split is needed for "<dataset type> <metric>" case (e.g. "train l1")
self.first_metric = env.evaluation_result_list[0][1].split(" ")[-1]
self.first_metric = first_metric_name
for eval_ret, delta in zip(env.evaluation_result_list, deltas):
self.best_iter.append(0)
if eval_ret[3]: # greater is better
Expand All @@ -381,15 +388,15 @@ def _init(self, env: CallbackEnv) -> None:
self.best_score.append(float("inf"))
self.cmp_op.append(partial(self._lt_delta, delta=delta))

def _final_iteration_check(self, env: CallbackEnv, eval_name_splitted: List[str], i: int) -> None:
def _final_iteration_check(self, *, env: CallbackEnv, metric_name: str, i: int) -> None:
if env.iteration == env.end_iteration - 1:
if self.verbose:
best_score_str = "\t".join([_format_eval_result(x, show_stdv=True) for x in self.best_score_list[i]])
_log_info(
"Did not meet early stopping. " f"Best iteration is:\n[{self.best_iter[i] + 1}]\t{best_score_str}"
)
if self.first_metric_only:
_log_info(f"Evaluated only: {eval_name_splitted[-1]}")
_log_info(f"Evaluated only: {metric_name}")
raise EarlyStopException(self.best_iter[i], self.best_score_list[i])

def __call__(self, env: CallbackEnv) -> None:
Expand All @@ -405,21 +412,18 @@ def __call__(self, env: CallbackEnv) -> None:
# self.best_score_list is initialized to an empty list
first_time_updating_best_score_list = self.best_score_list == []
for i in range(len(env.evaluation_result_list)):
score = env.evaluation_result_list[i][2]
if first_time_updating_best_score_list or self.cmp_op[i](score, self.best_score[i]):
self.best_score[i] = score
dataset_name, metric_name, metric_value, *_ = env.evaluation_result_list[i]
if first_time_updating_best_score_list or self.cmp_op[i](metric_value, self.best_score[i]):
self.best_score[i] = metric_value
self.best_iter[i] = env.iteration
if first_time_updating_best_score_list:
self.best_score_list.append(env.evaluation_result_list)
else:
self.best_score_list[i] = env.evaluation_result_list
# split is needed for "<dataset type> <metric>" case (e.g. "train l1")
eval_name_splitted = env.evaluation_result_list[i][1].split(" ")
if self.first_metric_only and self.first_metric != eval_name_splitted[-1]:
if self.first_metric_only and self.first_metric != metric_name:
continue # use only the first metric for early stopping
if self._is_train_set(
ds_name=env.evaluation_result_list[i][0],
eval_name=eval_name_splitted[0],
dataset_name=dataset_name,
env=env,
):
continue # train data for lgb.cv or sklearn wrapper (underlying lgb.train)
Expand All @@ -430,9 +434,9 @@ def __call__(self, env: CallbackEnv) -> None:
)
_log_info(f"Early stopping, best iteration is:\n[{self.best_iter[i] + 1}]\t{eval_result_str}")
if self.first_metric_only:
_log_info(f"Evaluated only: {eval_name_splitted[-1]}")
_log_info(f"Evaluated only: {metric_name}")
raise EarlyStopException(self.best_iter[i], self.best_score_list[i])
self._final_iteration_check(env, eval_name_splitted, i)
self._final_iteration_check(env=env, metric_name=metric_name, i=i)


def _should_enable_early_stopping(stopping_rounds: Any) -> bool:
Expand Down
38 changes: 27 additions & 11 deletions python-package/lightgbm/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -581,15 +581,31 @@ def _agg_cv_result(
raw_results: List[List[_LGBM_BoosterEvalMethodResultType]],
) -> List[_LGBM_BoosterEvalMethodResultWithStandardDeviationType]:
"""Aggregate cross-validation results."""
cvmap: Dict[str, List[float]] = OrderedDict()
metric_type: Dict[str, bool] = {}
# build up 2 maps, of the form:
#
# OrderedDict{
# (<dataset_name>, <metric_name>): <is_higher_better>
# }
#
# OrderedDict{
# (<dataset_name>, <metric_name>): list[<metric_value>]
# }
#
metric_types: Dict[Tuple[str, str], bool] = OrderedDict()
metric_values: Dict[Tuple[str, str], List[float]] = OrderedDict()
for one_result in raw_results:
for one_line in one_result:
key = f"{one_line[0]} {one_line[1]}"
metric_type[key] = one_line[3]
cvmap.setdefault(key, [])
cvmap[key].append(one_line[2])
return [("cv_agg", k, float(np.mean(v)), metric_type[k], float(np.std(v))) for k, v in cvmap.items()]
for dataset_name, metric_name, metric_value, is_higher_better in one_result:
key = (dataset_name, metric_name)
metric_types[key] = is_higher_better
metric_values.setdefault(key, [])
metric_values[key].append(metric_value)

# turn that into a list of tuples of the form:
#
# [
# (<dataset_name>, <metric_name>, mean(<values>), <is_higher_better>, std_dev(<values>))
# ]
return [(k[0], k[1], float(np.mean(v)), metric_types[k], float(np.std(v))) for k, v in metric_values.items()]


def cv(
Expand Down Expand Up @@ -812,9 +828,9 @@ def cv(
)
cvbooster.update(fobj=fobj) # type: ignore[call-arg]
res = _agg_cv_result(cvbooster.eval_valid(feval)) # type: ignore[call-arg]
for _, key, mean, _, std in res:
results[f"{key}-mean"].append(mean)
results[f"{key}-stdv"].append(std)
for dataset_name, metric_name, metric_mean, _, metric_std_dev in res:
results[f"{dataset_name} {metric_name}-mean"].append(metric_mean)
results[f"{dataset_name} {metric_name}-stdv"].append(metric_std_dev)
try:
for cb in callbacks_after_iter:
cb(
Expand Down
Loading

0 comments on commit dfc4c7a

Please sign in to comment.