Skip to content
/ DOS Public

[ICLR 2024] An official PyTorch implementation of paper 'DOS: Diverse Outlier Sampling for Out-of-Distribution Detection'

License

Notifications You must be signed in to change notification settings

lygjwy/DOS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


DOS

An official PyTorch implementation of the ICLR 2024 paper
"DOS: Diverse Outlier Sampling for Out-of-Distribution Detection"

   

Get StartedCitation

Get Started

Overview

This repository is an official PyTorch implementation of the ICLR 2024 paper 'DOS: Diverse Outlier Sampling for Out-of-Distribution Detection'. The illustration of our algorithm is shown as below: diagram

Requirements

pip install -r requirements.txt

Training

python train_diverse.py

Evaluation

OODs="svhn lsunc dtd places365_10k tinc lsunr tinr isun"
python detect.py --id cifar100 --ood $OODs --score abs --pretrain /path/to/trained/classifier

Results

diagram

Citation

If you find our repository useful for your research, please consider citing our paper:

@inproceedings{jiang2024dos,
  title={{DOS}: Diverse Outlier Sampling for Out-of-Distribution Detection},
  author={Wenyu Jiang and Hao Cheng and MingCai Chen and Chongjun Wang and Hongxin Wei},
  booktitle={The Twelfth International Conference on Learning Representations},
  year={2024},
  url={https://openreview.net/forum?id=iriEqxFB4y}
}

About

[ICLR 2024] An official PyTorch implementation of paper 'DOS: Diverse Outlier Sampling for Out-of-Distribution Detection'

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages