Skip to content

Go library for decoding generic map values and native Go structures into Arrow.

License

Notifications You must be signed in to change notification settings

loicalleyne/bodkin

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bodkin 🏹

Go Reference

Go library for generating schemas and decoding generic map values and native Go structures to Apache Arrow.

The goal is to provide a useful toolkit to make it easier to use Arrow, and by extension Parquet, especially on data whose schema is evolving or not strictly defined. An example would be with working with data retrieved from a 3rd-party API that does not maintain their OpenAPI spec.

Bodkin enables you to use your data to define and evolve your Arrow Schema.

Features

Arrow schema generation from data type inference

  • Converts a structured input (json string or []byte, Go struct or map[string]any) into an Apache Arrow schema
    • Supports nested types
  • Automatically evolves the Arrow schema with new fields when providing new inputs
  • Option to merge new infered schema at existing path for composibility (bodkin.UnifyAtPath)
  • Converts schema field types when unifying schemas to accept evolving input data (bodkin.WithTypeConversion)
  • Tracks changes to the schema
  • Export/import a serialized Arrow schema to/from file or []byte to transmit or persist schema definition

Custom data loader

🚀 Install

Using Bodkin is easy. First, use go get to install the latest version of the library.

go get -u github.com/loicalleyne/bodkin@latest

💡 Usage

You can import bodkin using:

import "github.com/loicalleyne/bodkin"

Create a new Bodkin, provide some structured data and print out the resulting Arrow Schema's string representation and any field evaluation errors

var jsonS1 string = `{
    "count": 89,
    "next": "https://sub.domain.com/api/search/?models=thurblig&page=3",
    "previous": null,
    "results": [{"id":7594}],
    "arrayscalar":[],
    "datefield":"1979-01-01",
    "timefield":"01:02:03"
    }`
u, _ := bodkin.NewBodkin(bodkin.WithInferTimeUnits(), bodkin.WithTypeConversion())
u.Unify(jsonS1)
s, _ := u.OriginSchema()
fmt.Printf("original input %v\n", s.String())
for _, e := range u.Err() {
	fmt.Printf("%v : [%s]\n", e.Issue, e.Dotpath)
}
// original input schema:
//   fields: 5
//     - results: type=list<item: struct<id: float64>, nullable>, nullable
//     - datefield: type=date32, nullable
//     - timefield: type=time64[ns], nullable
//     - count: type=float64, nullable
//     - next: type=utf8, nullable
// could not determine type of unpopulated field : [$previous]
// could not determine element type of empty array : [$arrayscalar]

Provide some more structured data and print out the new merged schema and the list of changes

var jsonS2 string = `{
"count": 89.5,
"next": "https://sub.domain.com/api/search/?models=thurblig&page=3",
"previous": "https://sub.domain.com/api/search/?models=thurblig&page=2",
"results": [{"id":7594,"scalar":241.5,"nestedObj":{"strscalar":"str1","nestedarray":[123,456]}}],
"arrayscalar":["str"],
"datetime":"2024-10-24 19:03:09",
"event_time":"2024-10-24T19:03:09+00:00",
"datefield":"2024-10-24T19:03:09+00:00",
"timefield":"1970-01-01"
}`
u.Unify(jsonS2)
schema, _ := u.Schema()
fmt.Printf("\nunified %v\n", schema.String())
fmt.Println(u.Changes())
// unified schema:
//   fields: 9
//     - count: type=float64, nullable
//     - next: type=utf8, nullable
//     - results: type=list<item: struct<id: float64, scalar: float64, nested: struct<strscalar: utf8, nestedarray: list<item: float64, nullable>>>, nullable>, nullable
//     - datefield: type=timestamp[ms, tz=UTC], nullable
//     - timefield: type=utf8, nullable
//     - previous: type=utf8, nullable
//     - datetime: type=timestamp[ms, tz=UTC], nullable
//     - arrayscalar: type=list<item: utf8, nullable>, nullable
//     - event_time: type=timestamp[ms, tz=UTC], nullable
// changes:
// added $previous : utf8
// added $datetime : timestamp[ms, tz=UTC]
// changed $datefield : from date32 to timestamp[ms, tz=UTC]
// added $results.results.elem.scalar : float64
// added $results.results.elem.nested : struct<strscalar: utf8, nestedarray: list<item: float64, nullable>>
// added $arrayscalar : list<item: utf8, nullable>
// added $event_time : timestamp[ms, tz=UTC]
// changed $timefield : from time64[ns] to utf8

Also works with nested Go structs and slices

	stu := Student{
		Name: "StudentName",
		Age:  25,
		ID:   123456,
		Day:  123,
	}
	sch := School{
		Name: "SchoolName",
		Address: AddressType{
			Country: "CountryName",
		},
	}
	e, _ := bodkin.NewBodkin(stu, bodkin.WithInferTimeUnits(), bodkin.WithTypeConversion())
	sc, err := e.OriginSchema()
	fmt.Printf("original input %v\n", sc.String())
// original input schema:
//   fields: 5
//     - ID: type=int64, nullable
//     - Day: type=int32, nullable
//     - School: type=struct<Name: utf8, Address: struct<Street: utf8, City: utf8, Region: utf8, Country: utf8>>, nullable
//     - Name: type=utf8, nullable
//     - Age: type=int32, nullable
	e.Unify(sch)
	sc, err = e.OriginSchema()
	fmt.Printf("unified %v\n", sc.String())
// unified schema:
//   fields: 5
//     - ID: type=int64, nullable
//     - Day: type=int32, nullable
//     - School: type=struct<Name: utf8, Address: struct<Street: utf8, City: utf8, Region: utf8, Country: utf8>>, nullable
//     - Name: type=utf8, nullable
//     - Age: type=int32, nullable

Export your schema to a file, then import the file to retrieve the schema; or export/import to/from a []byte.

_ = u.ExportSchemaFile("./test.schema")
imp, _ := u.ImportSchemaFile("./test.schema")
fmt.Printf("imported %v\n", imp.String())

bs, _ := u.ExportSchemaBytes()
sc, _ := u.ImportSchemaBytes(bs)
fmt.Printf("imported %v\n", sc.String())

Use a Bodkin Reader to load data to Arrow Records

u := bodkin.NewBodkin(bodkin.WithInferTimeUnits(), bodkin.WithTypeConversion())
u.Unify(jsonS1)	// feed data for schema generation
rdr, _ := u.NewReader() // infered schema in Bodkin used to create Reader
rec, _ := rdr.ReadToRecord([]byte(jsonS1)) // Reader loads data and returns Arrow Record

Provide a Bodkin Reader with an io.Reader to load many records

import "github.com/loicalleyne/bodkin/reader"
...
u := bodkin.NewBodkin(bodkin.WithInferTimeUnits(), bodkin.WithTypeConversion())
// Create Reader attached to Bodkin ...
u.NewReader(schema, 0, reader.WithIOReader(ff, reader.DefaultDelimiter), reader.WithChunk(1024))
for u.Reader.Next(){
	rec := r.Record()
}
// or create a stand-alone Reader if you have an existing *arrow.Schema
rdr, _ := reader.NewReader(schema, 0, reader.WithIOReader(ff, reader.DefaultDelimiter), reader.WithChunk(1024))
for rdr.Next() {
	rec := r.Record()
...
}

Use the generated Arrow schema with Arrow's built-in JSON reader to decode JSON data into Arrow records

rdr = array.NewJSONReader(strings.NewReader(jsonS2), schema)
defer rdr.Release()
for rdr.Next() {
    rec := rdr.Record()
    rj, _ := rec.MarshalJSON()
    fmt.Printf("\nmarshaled record:\n%v\n", string(rj))
}
// marshaled record:
// [{"arrayscalar":["str"],"count":89.5,"datefield":"2024-10-24 19:03:09Z","datetime":"2024-10-24 19:03:09Z","event_time":"2024-10-24 19:03:09Z","next":"https://sub.domain.com/api/search/?models=thurblig\u0026page=3","previous":"https://sub.domain.com/api/search/?models=thurblig\u0026page=2","results":[{"id":7594,"nested":{"nestedarray":[123,456],"strscalar":"str1"},"scalar":241.5}],"timefield":"1970-01-01"}
// ]

💫 Show your support

Give a ⭐️ if this project helped you! Feedback and PRs welcome.

License

Bodkin is released under the Apache 2.0 license. See LICENCE.txt

About

Go library for decoding generic map values and native Go structures into Arrow.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages