Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 12 additions & 8 deletions djinn/djinn_fns.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@
# For details about use and distribution, please read DJINN/LICENSE .
###############################################################################

from __future__ import print_function

import tensorflow as tf
import numpy as np
from sklearn.tree import _tree
Expand Down Expand Up @@ -351,14 +353,15 @@ def multilayer_perceptron(x, weights, biases):
train_accur[pp][epoch] = avg_cost
valid_accur[pp][epoch] = cost.eval({x: xtest, y: ytest, keep_prob:dropout_keep_prob})
# display training progresss
if epoch % display_step == 0:
if epoch % display_step == 0 or epoch == (training_epochs-1):
if regression == True:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("Epoch:", '%04d' % (epoch+1),'/ %d' %(training_epochs), "cost=", "{:.9f}".format(avg_cost), end='\r')
#for classification, print cost and accuracy:
else:
avg_accuracy = accuracy.eval({x: xtrain, y: ytrain, keep_prob:dropout_keep_prob})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost),
"accuracy=", "{:.3f}".format(avg_accuracy))
print("Epoch:", '%04d' % (epoch+1),'/ %d'%(training_epochs), "cost=", "{:.9f}".format(avg_cost),
"accuracy=", "{:.3f}".format(avg_accuracy),end='\r')
print("")
print("Optimization Finished!")

#save final weights/biases
Expand Down Expand Up @@ -646,15 +649,16 @@ def tf_continue_training(regression, xscale, yscale, x1, y1, ntrees,
keep_prob:dropout_keep_prob})
avg_cost += c / total_batch
# display training progresss
if epoch % display_step == 0:
if epoch % display_step == 0 or epoch == (training_epochs-1):
if regression == True:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("Epoch:", '%04d' % (epoch+1),'/ %d' %(training_epochs), "cost=", "{:.9f}".format(avg_cost), end='\r')
#for classification, print cost and accuracy:
else:
avg_accuracy = sess[pp].run(accuracy,
feed_dict = {x: xtrain, y: ytrain, keep_prob:dropout_keep_prob})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost),
"accuracy=", "{:.3f}".format(avg_accuracy))
print("Epoch:", '%04d' % (epoch+1), '/ %d' %(training_epochs), "cost=", "{:.9f}".format(avg_cost),
"accuracy=", "{:.3f}".format(avg_accuracy), end='\r')
print("")
print("Optimization Finished!")

#save model and nn info
Expand Down