-
Notifications
You must be signed in to change notification settings - Fork 43
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
split deep_learning.md into serveral parts
- Loading branch information
Showing
4 changed files
with
119 additions
and
113 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
## Convolutional Nerual Netowrks | ||
--- | ||
|
||
##### ImageNet Records | ||
- 2016 arXiv [Identity Mappings in Deep Residual Networks](http://arxiv.org/pdf/1603.05027v1.pdf) | ||
- 2016 arXiv [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](http://arxiv.org/abs/1602.07261) (Inception V4) | ||
- 2015 arXiv [Deep Residual Learning for Image Recognition](http://arxiv.org/abs/1512.03385) (ResNet) | ||
- 2015 arXiv [Rethinking the Inception Architecture for Computer Vision](http://arxiv.org/abs/1512.00567) (Inception V3) | ||
- 2015 ICML [Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift](http://jmlr.org/proceedings/papers/v37/ioffe15.pdf) (Inception V2) | ||
- 2015 ICCV [Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification](http://research.microsoft.com/en-us/um/people/kahe/publications/iccv15imgnet.pdf) (PReLU) | ||
- 2015 ICLR [Very Deep Convolutional Networks For Large-scale Image Recognition](http://arxiv.org/abs/1409.1556) (VGG) | ||
- 2015 CVPR [Going Deeper with Convolutions](http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf) (GoogleNet/Inception V1) | ||
- 2012 NIPS [ImageNet Classification with Deep Convolutional Neural Networks](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) (AlexNet) | ||
|
||
##### Arichitecture Design | ||
|
||
- 2016 arXiv [Benefits of depth in neural networks](http://arxiv.org/abs/1602.04485) | ||
- 2016 AAAI [On the Depth of Deep Neural Networks: A Theoretical View](http://arxiv.org/abs/1506.05232) | ||
- 2016 arXiv [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size](http://arxiv.org/abs/1602.07360) | ||
- 2015 CVPR [Convolutional Neural Networks at Constrained Time Cost](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/He_Convolutional_Neural_Networks_2015_CVPR_paper.pdf) | ||
- 2015 ICLR [FitNets: Hints for Thin Deep Nets](http://arxiv.org/pdf/1412.6550v4.pdf) | ||
- 2014 NIPS [Do Deep Nets Really Need to be Deep?](http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf) | ||
- 2014 ICLRW [Understanding Deep Architectures using a Recursive Convolutional Network](http://arxiv.org/abs/1312.1847) | ||
- 2014 ECCV [Visualizing and Understanding Convolutional Networks](https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf) | ||
- 2009 ICCV [What is the Best Multi-Stage Architecture for Object Recognition?](http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf) | ||
- 1994 T-NN [SVD-NET: An Algorithm that Automatically Selects Network Structure](http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=286929) | ||
|
||
##### Network Binarization | ||
- 2016 arXiv [XNOR-Net: ImageNet Classification Using Binary | ||
Convolutional Neural Networks](http://arxiv.org/pdf/1603.05279v1.pdf) | ||
- 2016 arXiv [Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1](http://arxiv.org/abs/1602.02830) | ||
- 2015 NIPS [BinaryConnect: Training Deep Neural Networks with binary weights during propagations](https://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf) | ||
|
||
##### Model Compression / Parameter Pruning | ||
- 2016 ICLR [Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding](http://arxiv.org/abs/1510.00149) | ||
- 2016 ICLR [Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications](http://arxiv.org/abs/1511.06530) | ||
- 2015 arXiv [Training CNNs with Low-Rank Filters for Efficient Image Classification](http://arxiv.org/abs/1511.06744) | ||
- 2015 arXiv [Structured Pruning of Deep Convolutional Neural Networks](http://arxiv.org/abs/1512.08571) | ||
- 2015 arXiv [Data-free parameter pruning for Deep Neural Networks](http://arxiv.org/abs/1507.06149) | ||
- 2015 ICCV [An exploration of parameter redundancy in deep networks with circulant projections](http://felixyu.org/pdf/ICCV15_circulant.pdf) | ||
- 2015 ICML [Compressing Neural Networks with the Hashing Trick](http://jmlr.org/proceedings/papers/v37/chenc15.pdf) | ||
- 2015 NIPS [Learning both Weights and Connections for Efficient Neural Networks](http://arxiv.org/abs/1506.02626) | ||
- 2014 arXiv [Compressing deep convolutional networks | ||
using vector quantization](http://arxiv.org/abs/1412.6115) | ||
- 2014 NIPSW [Distilling the Knowledge in a Neural Network](https://fb56552f-a-62cb3a1a-s-sites.googlegroups.com/site/deeplearningworkshopnips- 2014/65.pdf?attachauth=ANoY7cr8J-eqASFdYZeOQK8d9aGCtxzQpaVNCcjKgt1THV7e9FKNuTlrH4QCPmgMg2jynAz3ehjOU_2q9SMsnBYZq3_Jlxf1NnWcBejaVZi4vNHZ41H2DK8R-MJsk3MqfMDXOfEPxhAAOwUBH7oE-EtEKDoYa-16eqZ5djaoT4VXdir383rikNv6YF68dhm84kw04VCzH5XpA_8ucgW3iBr77bkjaYvNvC6YsUuC3PyVEPIusOZaM94%3D&attredirects=0) | ||
- 1989 NIPS [Optimal Brain Damage](http://yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf) | ||
|
||
<!--##### Other | ||
- 2013 PAMI [Invariant Scattering Convolution Networks](http://www.di.ens.fr/data/publications/papers/pami-final.pdf) --> | ||
|
||
#### Applications | ||
- 2015 CVPR [FaceNet: A Unified Embedding for Face Recognition and Clustering](http://arxiv.org/abs/1503.03832) | ||
- 2012 CVPR [Towards Good Practice in Large-Scale Learning for Image Classification](http://hal.inria.fr/docs/00/69/00/14/PDF/cvpr2012.pdf) | ||
- 2012 ICML [Building High-level Features Using Large Scale Unsupervised Learning](http://static.googleusercontent.com/media/research.google.com/en/us/archive/unsupervised_icml2012.pdf) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
## Optimization | ||
--- | ||
|
||
- 2016 ICLR [Data-Dependent Path Normalization in Neural Networks](http://arxiv.org/pdf/1511.06747v4.pdf) | ||
- 2016 Blog [An overview of gradient descent optimization algorithms](http://sebastianruder.com/optimizing-gradient-descent/index.html) | ||
- 2015 arXiv [Adding Gradient Noise Improves Learning for Very Deep Networks](http://arxiv.org/abs/1511.06807) | ||
- 2015 DL Summer School [Non-Smooth, Non-Finite, and Non-Convex Optimization](http://www.iro.umontreal.ca/~memisevr/dlss- 2015/- 2015_DLSS_NonSmoothNonFiniteNonConvex.pdf) | ||
- 2015 NIPS [Training Very Deep Networks](http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf) | ||
- 2015 NIPS [Deep learning with Elastic Averaging SGD](https://www.cs.nyu.edu/~zsx/nips- 2015.pdf) (EASGD) | ||
- 2015 CVPR [Convolutional Neural Networks at Constrained Time Cost](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/He_Convolutional_Neural_Networks_2015_CVPR_paper.pdf) | ||
- 2015 ICMLW [Highway Networks](http://arxiv.org/pdf/1505.00387v2.pdf) | ||
- 2015 ICLR [Parallel training of Deep Neural Networks with Natural Gradient and Parameter Averaging](http://arxiv.org/pdf/1409.1556v6.pdf) | ||
- 2015 ICLR [Adam: A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980) (Adam) | ||
- 2015 AISTATS [Deeply-Supervised Nets](http://jmlr.org/proceedings/papers/v38/lee15a.pdf) | ||
- 2014 JMLR [Dropout: A Simple Way to Prevent Neural Networks from | ||
Overfitting](https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf) (Dropout) | ||
- 2014 NIPS [Identifying and attacking the saddle point problem in high-dimensional non-convex optimization](http://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization.pdf) | ||
- 2014 OSLW [On the Computational Complexity of Deep Learning](http://lear.inrialpes.fr/workshop/osl- 2015/slides/osl- 2015_shalev_shwartz.pdf) | ||
- 2013 ICML [On the importance of initialization and momentum in deep learning](http://www.cs.utoronto.ca/~ilya/pubs/- 2013/1051_2.pdf) | ||
- 2011 ICML [On optimization methods for deep learning](http://ai.stanford.edu/~quocle/LeNgiCoaLahProNg11.pdf) | ||
- 2010 AISTATS [Understanding the difficulty of training deep feedforward neural networks](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf) |
Oops, something went wrong.