Skip to content

Commit

Permalink
Fixed typo error and added examples for tensorflow and mindspore.
Browse files Browse the repository at this point in the history
  • Loading branch information
XinYao1994 committed Mar 22, 2022
1 parent 527c574 commit 4c412fe
Show file tree
Hide file tree
Showing 17 changed files with 818 additions and 39 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,6 @@ RUN rm -rf /home/plato/.git
RUN pip install -r /home/plato/requirements.txt

WORKDIR /home/work
COPY examples/federated_learning/surface_defect_detection_v2 /home/work/
COPY examples/federated_learning/surface_defect_detection_pytorch /home/work/

CMD ["/bin/sh", "-c", "ulimit -n 50000; python aggregate.py"]
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,6 @@ RUN rm -rf /home/plato/.git
RUN pip install -r /home/plato/requirements.txt

WORKDIR /home/work
COPY examples/federated_learning/surface_defect_detection_v2 /home/work/
COPY examples/federated_learning/surface_defect_detection_pytorch /home/work/

ENTRYPOINT ["python", "train.py"]
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
# Copyright 2021 The KubeEdge Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np

import mindspore as ms
import mindspore.nn as nn
from mindspore.dataset import GeneratorDataset
import mindspore.dataset.vision.c_transforms as c_vision
import mindspore.dataset.vision.py_transforms as py_vision

from sedna.algorithms.aggregation import FedAvgV2
from sedna.algorithms.client_choose import SimpleClientChoose
from sedna.common.config import Context
from sedna.core.federated_learning import FederatedLearningV2

# os.environ['BACKEND_TYPE'] = 'KERAS'

simple_chooser = SimpleClientChoose(per_round=2)

# It has been determined that mistnet is required here.
fedavg = FedAvgV2()

# The function `get_transmitter_from_config()` returns an object instance.
s3_transmitter = FederatedLearningV2.get_transmitter_from_config()

class SddDataset():
def __init__(self, x, y) -> None:
self.labels = y
self.images = x
self.index = 0

def __len__(self):
return len(self.images)

def __iter__(self):
return self

def __next__(self):
self.index = self.index % len(self.images)
x, y = self.images[self.index], self.labels[self.index]
self.index = self.index + 1
return x, y


class myDataset:
def __init__(self, trainset=None, testset=None) -> None:
self.customized = True
transform = [
c_vision.Resize((128, 128)),
py_vision.ToTensor(),
py_vision.Normalize((0.5, ), (0.5, ))
]
self.trainset = GeneratorDataset(SddDataset(trainset[0], trainset[1]),
column_names=["image", "label"])
self.testset = GeneratorDataset(SddDataset(trainset[0], trainset[1]),
column_names=["image", "label"])

self.trainset = self.trainset.map(operations=transform,
input_columns="image").batch(
batch_size=int(Context.get_parameters("batch_size", 32)))

self.testset = self.testset.map(operations=transform,
input_columns="image").batch(
batch_size=int(Context.get_parameters("batch_size", 32)))

class SddModel(nn.Cell):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=(3, 3), stride=2)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)

self.conv2 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=(3, 3))
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)

self.flatten = nn.Flatten()

self.dropout = nn.Dropout(0.25)

self.fc1 = nn.Dense(8192, 64)
self.relu3 = nn.ReLU()

self.fc2 = nn.Dense(64, 32)
self.relu4 = nn.ReLU()

self.fc3 = nn.Dense(32, 2)

def construct(self, x):
x = self.pool1(self.relu1(self.conv1(x)))
x = self.pool2(self.relu2(self.conv2(x)))
x = self.dropout(self.flatten(x))
x = self.relu3(self.fc1(x))
x = self.relu4(self.fc2(x))
x = self.fc3(x)
return x

class Estimator:
def __init__(self) -> None:
self.model = SddModel()
self.pretrained = None
self.saved = None
self.hyperparameters = {
"use_mindspore": True,
"type": "basic",
"rounds": int(Context.get_parameters("exit_round", 5)),
"target_accuracy": 0.97,
"epochs": int(Context.get_parameters("epochs", 5)),
"batch_size": int(Context.get_parameters("batch_size", 32)),
"optimizer": "SGD",
"learning_rate": float(Context.get_parameters("learning_rate", 0.01)),
# The machine learning model
"model_name": "sdd_model",
"momentum": 0.9,
"weight_decay": 0.0,
"history": 0.1
}


Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Copyright 2021 The KubeEdge Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from PIL import Image

from interface import fedavg, s3_transmitter
from interface import myDataset, Estimator
from sedna.core.federated_learning import FederatedLearningV2
from sedna.datasources import TxtDataParse
from sedna.common.config import BaseConfig

def image_process(line):
file_path, label = line.split(',')
root_path = os.getcwd()
file_path = os.path.join(root_path, file_path)
x = Image.open(file_path)
y = int(label)
return [x, y]

def readFromTxt(path):
data_x = []
data_y = []
with open(path) as f:
lines = f.readlines()
for line in lines:
x, y = image_process(line)
data_x.append(x)
data_y.append(y)
return data_x, data_y

def main():
train_dataset_url = BaseConfig.train_dataset_url
# we have same data in the trainset and testset
test_dataset_url = BaseConfig.train_dataset_url

# train_data = TxtDataParse(data_type="train", func=image_process)
# train_data.parse(train_dataset_url)
train_data = readFromTxt(train_dataset_url)
data = myDataset(trainset=train_data, testset=train_data)

estimator = Estimator()

fl_model = FederatedLearningV2(
data=data,
estimator=estimator,
aggregation=fedavg,
transmitter=s3_transmitter)

fl_model.train()

if __name__ == '__main__':
main()
177 changes: 177 additions & 0 deletions examples/federated_learning/surface_defect_detection_pytorch/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
# Using Federated Learning Job in Surface Defect Detection Scenario
This case introduces how to use federated learning job in surface defect detection scenario.
In the safety surface defect detection, data is scattered in different places (such as server node, camera or others) and cannot be aggregated due to data privacy and bandwidth. As a result, we cannot use all the data for training.
Using Federated Learning, we can solve the problem. Each place uses its own data for model training ,uploads the weight to the cloud for aggregation, and obtains the aggregation result for model update.


## Surface Defect Detection Experiment
> Assume that there are two edge nodes and a cloud node. Data on the edge nodes cannot be migrated to the cloud due to privacy issues.
> Base on this scenario, we will demonstrate the surface inspection.
### Prepare Nodes
```
CLOUD_NODE="cloud-node-name"
EDGE1_NODE="edge1-node-name"
EDGE2_NODE="edge2-node-name"
```

### Install Sedna

Follow the [Sedna installation document](/docs/setup/install.md) to install Sedna.

### Prepare Dataset

Download [dataset](https://github.com/abin24/Magnetic-tile-defect-datasets.) and the [label file](/examples/federated_learning/surface_defect_detection/data/1.txt) to `/data` of ```EDGE1_NODE```.
```
mkdir -p /data
cd /data
git clone https://github.com/abin24/Magnetic-tile-defect-datasets..git Magnetic-tile-defect-datasets
curl -o 1.txt https://raw.githubusercontent.com/kubeedge/sedna/main/examples/federated_learning/surface_defect_detection/data/1.txt
```

Download [dataset](https://github.com/abin24/Magnetic-tile-defect-datasets.) and the [label file](/examples/federated_learning/surface_defect_detection/data/2.txt) to `/data` of ```EDGE2_NODE```.
```
mkdir -p /data
cd /data
git clone https://github.com/abin24/Magnetic-tile-defect-datasets..git Magnetic-tile-defect-datasets
curl -o 2.txt https://raw.githubusercontent.com/kubeedge/sedna/main/examples/federated_learning/surface_defect_detection/data/2.txt
```

### Prepare Images
This example uses these images:
1. aggregation worker: ```kubeedge/sedna-example-federated-learning-surface-defect-detection-aggregation:v0.3.0```
2. train worker: ```kubeedge/sedna-example-federated-learning-surface-defect-detection-train:v0.3.0```

These images are generated by the script [build_images.sh](/examples/build_image.sh).

### Create Federated Learning Job

#### Create Dataset

create dataset for `$EDGE1_NODE`
```
kubectl create -f - <<EOF
apiVersion: sedna.io/v1alpha1
kind: Dataset
metadata:
name: "edge1-surface-defect-detection-dataset"
spec:
url: "/data/1.txt"
format: "txt"
nodeName: $EDGE1_NODE
EOF
```

create dataset for `$EDGE2_NODE`
```
kubectl create -f - <<EOF
apiVersion: sedna.io/v1alpha1
kind: Dataset
metadata:
name: "edge2-surface-defect-detection-dataset"
spec:
url: "/data/2.txt"
format: "txt"
nodeName: $EDGE2_NODE
EOF
```

#### Create Model

create the directory `/model` in the host of `$EDGE1_NODE`
```
mkdir /model
```
create the directory `/model` in the host of `$EDGE2_NODE`
```
mkdir /model
```

create model
```
kubectl create -f - <<EOF
apiVersion: sedna.io/v1alpha1
kind: Model
metadata:
name: "surface-defect-detection-model"
spec:
url: "/model"
format: "pb"
EOF
```

#### Start Federated Learning Job

```
kubectl create -f - <<EOF
apiVersion: sedna.io/v1alpha1
kind: FederatedLearningJob
metadata:
name: surface-defect-detection
spec:
aggregationWorker:
model:
name: "surface-defect-detection-model"
template:
spec:
nodeName: $CLOUD_NODE
containers:
- image: kubeedge/sedna-example-federated-learning-surface-defect-detection-aggregation:v0.3.0
name: agg-worker
imagePullPolicy: IfNotPresent
env: # user defined environments
- name: "exit_round"
value: "3"
resources: # user defined resources
limits:
memory: 2Gi
trainingWorkers:
- dataset:
name: "edge1-surface-defect-detection-dataset"
template:
spec:
nodeName: $EDGE1_NODE
containers:
- image: kubeedge/sedna-example-federated-learning-surface-defect-detection-train:v0.3.0
name: train-worker
imagePullPolicy: IfNotPresent
env: # user defined environments
- name: "batch_size"
value: "32"
- name: "learning_rate"
value: "0.001"
- name: "epochs"
value: "2"
resources: # user defined resources
limits:
memory: 2Gi
- dataset:
name: "edge2-surface-defect-detection-dataset"
template:
spec:
nodeName: $EDGE2_NODE
containers:
- image: kubeedge/sedna-example-federated-learning-surface-defect-detection-train:v0.3.0
name: train-worker
imagePullPolicy: IfNotPresent
env: # user defined environments
- name: "batch_size"
value: "32"
- name: "learning_rate"
value: "0.001"
- name: "epochs"
value: "2"
resources: # user defined resources
limits:
memory: 2Gi
EOF
```

### Check Federated Learning Status

```
kubectl get federatedlearningjob surface-defect-detection
```

### Check Federated Learning Train Result
After the job completed, you will find the model generated on the directory `/model` in `$EDGE1_NODE` and `$EDGE2_NODE`.
Loading

0 comments on commit 4c412fe

Please sign in to comment.