-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday20-xgboost实战.py
406 lines (384 loc) · 16.6 KB
/
day20-xgboost实战.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 13 16:08:41 2022
@author: 11146
"""
#Xgboost建模
import os
os.chdir('C:/Users/maihuanzhuo/Desktop/python-test') ##修改路径
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('X disease code.csv')
X = dataset.iloc[:, 1:14].values
Y = dataset.iloc[:, 0].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.30, random_state = 666)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
#xgboost调参
#包括eta、gamma、max_depth、min_child_weight、max_delta_step、subsample
#colsample_bytree、colsample_bylevel、lambda、alpha、n_estimators。
#n_estimators:基础模型数量,都懂了;
#eta:类似于Adaboost的leanring_rate,eta通过缩减特征的权重使提升计算过程更加保守(越不容易过拟合),默认0.3;
#max_depth:树的最大深度,值越大,越容易过拟合,默认6;
#gamma:值越大,算法越保守(越不容易过拟合),默认0,范围(0,1];
#min_child_weight:值较大时,可以避免模型学习到局部的特殊样本,这个值过高,会导致欠拟合,默认1;
#max_delta_step:设置正值算法会更保守(越不容易过拟合),默认0;
#subsample:减小这个值算法会更加保守,避免过拟合,但是设置的过小,它可能会导致欠拟合,默认1,范围(0,1];
#colsample_bytree:每颗树随机采样的列数的占比,默认1,范围(0,1];
#colsample_bylevel:对列数的采样的占比,默认1,范围(0,1];
#lambda:L2 正则化项的权重系数,越大模型越保守,默认1;
#alpha:L1 正则化项的权重系数,越大模型越保守,默认0;
#先默认xgboost跑一遍
import xgboost as xgb
classifier = xgb.XGBClassifier()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#出现了过拟合,调参
#换一种调法,一个一个参数的调整,主要是解决过拟合问题了:
#先调n_estimators
import xgboost as xgb
param_grid=[{
'n_estimators':[i for i in range(100,1000,100)],
},
]
boost = xgb.XGBClassifier()
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
#n_estimators=100,需要往小调
import xgboost as xgb
param_grid=[{
'n_estimators':[i for i in range(10,150,5)],
},
]
boost = xgb.XGBClassifier()
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
#n_estimators=15
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#到eta,类似于Adaboost的leanring_rate,eta通过缩减特征的权重使提升计算过程更加保守(越不容易过拟合),默认0.3;
param_grid=[{
'eta':[0.01,0.02,0.04,0.08,0.1,0.2,0.3],
},
]
boost = xgb.XGBClassifier(n_estimators=15)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
#eta=0.3
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#似乎好像没变化
#到max_depth
param_grid=[{
'max_depth':[i for i in range(1,10,1)],
},
]
boost = xgb.XGBClassifier(n_estimators=15,eta=0.3)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
#max_depth=2
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#好像不错
#接着到gamma,gamma:值越大,算法越保守(越不容易过拟合),默认0,范围(0,1];
param_grid=[{
'gamma':[0,0.1,1.0,2.0,3.0],
},
]
boost = xgb.XGBClassifier(n_estimators=15, eta=0.3, max_depth=2)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
#gamma=0
#min_child_weight,值较大时,可以避免模型学习到局部的特殊样本,这个值过高,会导致欠拟合,默认1;
param_grid=[{
'min_child_weight':[i for i in range(1,10,1)],
},
]
boost = xgb.XGBClassifier(n_estimators=15, eta=0.3, max_depth=2,gamma=0)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
#min_child_weight=4
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#没啥变化
#max_delta_step默认0,这个参数限制了每棵树权重改变的最大步长,
#如果这个参数的值为0,则意味着没有约束。如果他被赋予了某一个正值,则是这个算法更加保守。
#通常,这个参数我们不需要设置,但是当个类别的样本极不平衡的时候,这个参数对逻辑回归优化器是很有帮助的。
#感觉这个可以跳过
param_grid=[{
'max_delta_step':[i for i in range(1,10,1)],
},
]
boost = xgb.XGBClassifier(n_estimators=15, eta=0.3, max_depth=2,gamma=0,min_child_weight=4)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
#max_delta_step=2
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#subsample减小这个值算法会更加保守,避免过拟合,但是设置的过小,它可能会导致欠拟合,默认1,范围(0,1];
param_grid=[{
'subsample':[0.1,0.2,0.4,0.6,0.8,1.0],
},
]
boost = xgb.XGBClassifier(n_estimators=15, eta=0.3, max_depth=2,gamma=0,min_child_weight=4,
max_delta_step=2)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
print(grid_search.best_params_)
#subasample=0.8
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#微小变化
#colsample_bytree每颗树随机采样的列数的占比,默认1,范围(0,1];
param_grid=[{
'colsample_bytree':[0.1,0.2,0.4,0.6,0.8,1.0],
},
]
boost = xgb.XGBClassifier(n_estimators=15, eta=0.3, max_depth=2,gamma=0,min_child_weight=4,
max_delta_step=2,subasample=0.8)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
#colsample_bytree=0.8
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#又变回去了
#colsample_bylevel对列数的采样的占比,默认1,范围(0,1];
param_grid=[{
'colsample_bylevel':[0.1,0.2,0.4,0.6,0.8,1.0],
},
]
boost = xgb.XGBClassifier(n_estimators=15, eta=0.3, max_depth=2,gamma=0,min_child_weight=4,
max_delta_step=2,subasample=0.8,colsample_bytree=0.8)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
#默认参数1,那没必要看结果了
#reg_lambda也称reg_lambda,默认值为0,权重的L2正则化项。(和Ridge regression类似)。
#这个参数是用来控制XGBoost的正则化部分的。这个参数在减少过拟合上很有帮助。
param_grid=[{
'reg_lambda':[i for i in range(2,50,2)],
},
]
boost = xgb.XGBClassifier(n_estimators=15, eta=0.3, max_depth=2,gamma=0,min_child_weight=4,
max_delta_step=2,subasample=0.8,colsample_bytree=0.8)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
print(grid_search.best_params_)
#reg_lambda': 5
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#没变化
#reg_alpha也称reg_alpha默认为0,权重的L1正则化项。(和Lasso regression类似)。
#可以应用在很高维度的情况下,使得算法的速度更快。
param_grid=[{
'reg_alpha':[i for i in range(1,50,2)],
},
]
boost = xgb.XGBClassifier(n_estimators=15, eta=0.3, max_depth=2,gamma=0,min_child_weight=4,
max_delta_step=2,subasample=0.8,colsample_bytree=0.8,reg_lambda=5)
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
print(grid_search.best_params_)
#reg_alpha': 3
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
#变化也不大
#综上最优参数为boost = xgb.XGBClassifier(n_estimators=15, eta=0.3, max_depth=2,gamma=0,min_child_weight=4,
#max_delta_step=2,subasample=0.8,colsample_bytree=0.8,reg_lambda=5,reg_alpha=3)
#综合调整一遍
import xgboost as xgb
param_grid=[{
'n_estimators':[15,25],
'eta':[0.2,0.4],
'max_depth':[1,2],
'gamma':[0,0.1],
'min_child_weight':[4,6],
'max_delta_step':[1,2],
'subsample':[0.8,1.0],
'colsample_bytree':[0.8,1.0],
'reg_lambda':[5,7],
'reg_alpha':[3,5],
},
]
boost = xgb.XGBClassifier()
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)
grid_search.fit(X_train, y_train)
classifier = grid_search.best_estimator_
classifier.fit(X_train, y_train)
print(grid_search.best_params_)
#'colsample_bytree': 0.8, 'eta': 0.4, 'gamma': 0, 'max_delta_step': 1, 'max_depth': 2,
# 'min_child_weight': 4, 'n_estimators': 15, 'reg_alpha': 3, 'reg_lambda': 5, 'subsample': 0.8
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1]
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)
import math
from sklearn.metrics import confusion_matrix,roc_auc_score,auc,roc_curve
cm = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
#测试集的参数
a = cm[0,0]
b = cm[0,1]
c = cm[1,0]
d = cm[1,1]
acc = (a+d)/(a+b+c+d)
error_rate = 1 - acc
sen = d/(d+c)
sep = a/(a+b)
precision = d/(b+d)
F1 = (2*precision*sen)/(precision+sen)
MCC = (d*a-b*c) / (math.sqrt((d+b)*(d+c)*(a+b)*(a+c)))
auc_test = roc_auc_score(y_test, y_testprba)
#训练集的参数
a_train = cm_train[0,0]
b_train = cm_train[0,1]
c_train = cm_train[1,0]
d_train = cm_train[1,1]
acc_train = (a_train+d_train)/(a_train+b_train+c_train+d_train)
error_rate_train = 1 - acc_train
sen_train = d_train/(d_train+c_train)
sep_train = a_train/(a_train+b_train)
precision_train = d_train/(b_train+d_train)
F1_train = (2*precision_train*sen_train)/(precision_train+sen_train)
MCC_train = (d_train*a_train-b_train*c_train) / (math.sqrt((d_train+b_train)*(d_train+c_train)*(a_train+b_train)*(a_train+c_train)))
auc_train = roc_auc_score(y_train, y_trainprba)
#绘画训练集ROC曲线
fpr_train, tpr_train, thresholds_train = roc_curve(y_train, y_trainprba, pos_label=1, drop_intermediate=False)
plt.plot([0, 1], [0, 1], '--', color='navy')
plt.plot(fpr_train, tpr_train, 'k--',label='Mean ROC (area = {0:.4f})'.format(auc_train), lw=2,color='darkorange')
plt.xlim([-0.01, 1.01])
plt.ylim([-0.01, 1.01])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC of train')
plt.legend(loc="lower right")
#plt.savefig('rf_ljz_training sets muti-ROC.tif',dpi=300)
plt.show()
#绘画测试集ROC曲线
fpr_train, tpr_train, thresholds_train = roc_curve(y_test, y_testprba, pos_label=1, drop_intermediate=False)
plt.plot([0, 1], [0, 1], '--', color='navy')
plt.plot(fpr_train, tpr_train, 'k--',label='Mean ROC (area = {0:.4f})'.format(auc_test), lw=2,color='darkorange')
plt.xlim([-0.01, 1.01])
plt.ylim([-0.01, 1.01])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC of test')
plt.legend(loc="lower right")
#plt.savefig('rf_ljz_training sets muti-ROC.tif',dpi=300)
plt.show()