Skip to content

Commit

Permalink
removed unused code from the tests for ManagedTableDataset
Browse files Browse the repository at this point in the history
Signed-off-by: Minura Punchihewa <[email protected]>
  • Loading branch information
MinuraPunchihewa committed Oct 11, 2024
1 parent 46858c3 commit e9d097e
Showing 1 changed file with 0 additions and 167 deletions.
167 changes: 0 additions & 167 deletions kedro-datasets/tests/databricks/test_managed_table_dataset.py
Original file line number Diff line number Diff line change
@@ -1,173 +1,6 @@
import pandas as pd
import pytest
from pyspark.sql import SparkSession
from pyspark.sql.types import IntegerType, StringType, StructField, StructType

from kedro_datasets.databricks import ManagedTableDataset


@pytest.fixture
def sample_spark_df(spark_session: SparkSession):
schema = StructType(
[
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
]
)

data = [("Alex", 31), ("Bob", 12), ("Clarke", 65), ("Dave", 29)]

return spark_session.createDataFrame(data, schema)


@pytest.fixture
def upsert_spark_df(spark_session: SparkSession):
schema = StructType(
[
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
]
)

data = [("Alex", 32), ("Evan", 23)]

return spark_session.createDataFrame(data, schema)


@pytest.fixture
def mismatched_upsert_spark_df(spark_session: SparkSession):
schema = StructType(
[
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
StructField("height", IntegerType(), True),
]
)

data = [("Alex", 32, 174), ("Evan", 23, 166)]

return spark_session.createDataFrame(data, schema)


@pytest.fixture
def subset_spark_df(spark_session: SparkSession):
schema = StructType(
[
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
StructField("height", IntegerType(), True),
]
)

data = [("Alex", 32, 174), ("Evan", 23, 166)]

return spark_session.createDataFrame(data, schema)


@pytest.fixture
def subset_pandas_df():
return pd.DataFrame(
{"name": ["Alex", "Evan"], "age": [32, 23], "height": [174, 166]}
)


@pytest.fixture
def subset_expected_df(spark_session: SparkSession):
schema = StructType(
[
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
]
)

data = [("Alex", 32), ("Evan", 23)]

return spark_session.createDataFrame(data, schema)


@pytest.fixture
def sample_pandas_df():
return pd.DataFrame(
{"name": ["Alex", "Bob", "Clarke", "Dave"], "age": [31, 12, 65, 29]}
)


@pytest.fixture
def append_spark_df(spark_session: SparkSession):
schema = StructType(
[
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
]
)

data = [("Evan", 23), ("Frank", 13)]

return spark_session.createDataFrame(data, schema)


@pytest.fixture
def expected_append_spark_df(spark_session: SparkSession):
schema = StructType(
[
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
]
)

data = [
("Alex", 31),
("Bob", 12),
("Clarke", 65),
("Dave", 29),
("Evan", 23),
("Frank", 13),
]

return spark_session.createDataFrame(data, schema)


@pytest.fixture
def expected_upsert_spark_df(spark_session: SparkSession):
schema = StructType(
[
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
]
)

data = [
("Alex", 32),
("Bob", 12),
("Clarke", 65),
("Dave", 29),
("Evan", 23),
]

return spark_session.createDataFrame(data, schema)


@pytest.fixture
def expected_upsert_multiple_primary_spark_df(spark_session: SparkSession):
schema = StructType(
[
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
]
)

data = [
("Alex", 31),
("Alex", 32),
("Bob", 12),
("Clarke", 65),
("Dave", 29),
("Evan", 23),
]

return spark_session.createDataFrame(data, schema)


class TestManagedTableDataset:
def test_describe(self):
unity_ds = ManagedTableDataset(table="test")
Expand Down

0 comments on commit e9d097e

Please sign in to comment.