- Backbone: Depthwise Separable Convolutions
- Attention: SE Block (reduction=8)
- Residual Blocks: 2 stages
- Decoder: Bilinear upsampling + conv layers
- Input: 270×480 RGB
- Output: 270×480 binary lane mask
- Latency (End-to-End, pre+infer+post, batch=1): 25.05 ms/image (≈ 39.9 FPS)
- Pure Inference (forward only, batch=1): 1.88 ms/image (≈ 532 FPS)
- Model size: ~1 MB (PyTorch)
