-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Notebook STL Forecasting R version (#51)
- Loading branch information
1 parent
ac6dda1
commit 3bde153
Showing
2 changed files
with
132 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -137,4 +137,11 @@ dmypy.json | |
|
||
#vscode | ||
.vscode | ||
|
||
# RStudio | ||
.Rproj.user | ||
.RData | ||
.Rhistory | ||
.Rapp.history | ||
.Renviron | ||
*.nb.html |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
--- | ||
title: "Introduction to STL Forecasting" | ||
output: html_notebook | ||
--- | ||
|
||
In this notebook we present a [decomposition model](https://fabletools.tidyverts.org/reference/decomposition_model.html) that combines STL (Seasonal and Trend decomposition using Loess) and ETS/ARIMA with [tidyverts](https://tidyverts.org/). From the documentation: | ||
|
||
> This function allows you to specify a decomposition combination model using any additive decomposition. It works by first decomposing the data using the decomposition method provided to dcmp_fn with the given formula. Secondary models are used to fit each of the components from the resulting decomposition. | ||
For more details see Forecasting: [Principles and Practice, Section 3.6 STL Decomposition](https://otexts.com/fpp3/stl.html). | ||
|
||
```{r} | ||
library(readr) | ||
library(dplyr) | ||
library(lubridate) | ||
library(ggplot2) | ||
library(fable) | ||
library(feasts) | ||
library(stringr) | ||
options(dplyr.summarise.inform=F) | ||
``` | ||
|
||
# Read Data | ||
|
||
We will use the Basel temperature data set. | ||
|
||
```{r} | ||
raw_df <- read_csv('../../data/basel_weather.csv') | ||
``` | ||
|
||
# EDA | ||
|
||
```{r} | ||
data_df <- raw_df %>% | ||
rename(temperature = `Basel Temperature [2 m elevation corrected]`, | ||
precipitation = `Basel Precipitation Total`, | ||
wind_speed = `Basel Wind Speed [10 m]`, | ||
wind_direction = `Basel Wind Direction [10 m]`) %>% | ||
mutate(date = date(timestamp), | ||
year = year(timestamp), | ||
month = month(timestamp), | ||
day = day(timestamp), | ||
dayofyear = yday(timestamp), | ||
hour = hour(timestamp)) | ||
daily_data_df <- data_df %>% | ||
group_by(date, year, month, day, dayofyear) %>% | ||
summarise(temperature = mean(temperature)) %>% | ||
as_tsibble(index=date) | ||
daily_data_df %>% head() | ||
``` | ||
|
||
```{r} | ||
autoplot(daily_data_df, temperature) + | ||
labs(title='Basel Temperature (Daily)', y=expression(degree*C)) | ||
``` | ||
The time series contains a strong seasonal component. | ||
|
||
```{r} | ||
daily_data_df %>% gg_season(temperature) | ||
``` | ||
We check the decomposition of the time series using STL. | ||
|
||
```{r} | ||
daily_data_df %>% | ||
model(STL(temperature ~ season(period = 365, window = Inf))) %>% | ||
components() %>% | ||
autoplot() | ||
``` | ||
|
||
# Train-Test Split | ||
|
||
```{r} | ||
train_test_cut_date <- as_date('2019-01-01') | ||
df_train <- daily_data_df %>% filter(date < train_test_cut_date) | ||
df_test <- daily_data_df %>% filter(date >= train_test_cut_date) | ||
daily_data_df %>% | ||
mutate(data_set = if_else(date < train_test_cut_date, 'train', 'test')) %>% | ||
ggplot(aes(x=date, y=temperature, color=data_set)) + | ||
geom_line() + | ||
labs(title='Basel Temperature (Daily)', y=expression(degree*C)) + | ||
geom_vline(xintercept = train_test_cut_date, linetype = "longdash") | ||
``` | ||
# Model Fit | ||
|
||
We fit an exponential smoothing and an ARIMA model to the seasonal adjusted time series. | ||
|
||
```{r} | ||
fit <- df_train %>% | ||
model( | ||
stl_arima = decomposition_model( | ||
STL(temperature ~ season(period = 365, window = Inf)), | ||
ARIMA(season_adjust ~ 0 + pdq(2, 1, 1) + PDQ(0, 0, 0)) | ||
), | ||
stl_ets = decomposition_model( | ||
STL(temperature ~ season(period = 365, window = Inf)), | ||
ETS(season_adjust ~ season("N")) | ||
) | ||
) | ||
``` | ||
|
||
# Generate Forecast | ||
|
||
```{r} | ||
fc <- fit %>% | ||
forecast(h = nrow(df_test)) | ||
``` | ||
|
||
```{r} | ||
error <- fc %>% accuracy(df_test) | ||
rmse_arima <- error %>% filter(.model=="stl_arima") %>% pull(RMSE) | ||
rmse_ets <- error %>% filter(.model=="stl_ets") %>% pull(RMSE) | ||
``` | ||
|
||
```{r} | ||
fc %>% autoplot(df_test, level=c()) + | ||
labs(title='Basel Temperature (Daily)', y=expression(degree*C)) + | ||
scale_color_discrete(labels = c(stl_arima = str_interp("STL+ARIMA rmse = $[.2f]{rmse_arima}"), | ||
stl_ets = str_interp("STL+ETS rmse = $[.2f]{rmse_ets}"))) | ||
``` | ||
|