The code to accompany my submission to Michigan Quarterly Review's Special Issue on Computer-Generated Text.
- jupyterlab
- numpy
- pandas
- transformers
Start by installing with pip:
pip install jupyterlab numpy pandasAt the time of writing, to run the gemma-3-4b-it model used in 21-forking-chatbot.ipynb, you will need to install the transformers directly from Github instead:
pip install git+https://github.com/huggingface/transformers.gitCurrently, the code used in the Jupyter notebooks here are meant to be used on an Apple Silicon system. So the models will be loaded and used as such:
from transformers import AutoModelForCausalLM, AutoTokenizer
gpt2_tokenizer = AutoTokenizer.from_pretrained('openai-community/gpt2-large')
gpt2_model = AutoModelForCausalLM.from_pretrained('openai-community/gpt2-large').to('mps')
prompt = "Hello, world!"
encoded = gpt2_tokenizer(prompt, return_tensors="pt").to("mps")Where the model and the encoded prompt are moved to the MPS device.
If you want to run it on the CPU (which will take longer), use:
gpt2_model = AutoModelForCausalLM.from_pretrained('openai-community/gpt2-large').to('cpu')
encoded = gpt2_tokenizer(prompt, return_tensors="pt").to("cpu")If you have a Nvidia GPU, you can use:
gpt2_model = AutoModelForCausalLM.from_pretrained('openai-community/gpt2-large').to('cuda:0')
encoded = gpt2_tokenizer(prompt, return_tensors="pt").to("cuda:0")You can read more here.