forked from apache/singa
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
SINGA-9 Add Support for Restricted Boltzman Machine (RBM) model
This is to implement RBM in SINGA. To training RBM models, the Contrastive Divergence (CD) algorithm is implemented. We have implemented a BPWorker to run the Back-Propagation algorithm. To implement the CD algorithm, we follow the same way to create a CDWorker whose RunOneBatch function controls the logic of the CD algorithm, including positive phase, negative phase and computing gradient phase. RBM's layers are different to the layers for feed-forward neural networks, hence new layers for RBM models are added.
- Loading branch information
Showing
11 changed files
with
1,133 additions
and
72 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,299 @@ | ||
name: "deep-big-simple-mlp" | ||
train_steps: 12200 | ||
test_steps:100 | ||
test_freq:100 | ||
disp_freq:20 | ||
checkpoint_after: 1000 | ||
checkpoint_freq: 1000 | ||
checkpoint_path: "examples/rbm/checkpoint/rbm0/checkpoint/step6000-worker0.bin" | ||
checkpoint_path: "examples/rbm/checkpoint/rbm1/checkpoint/step6000-worker0.bin" | ||
checkpoint_path: "examples/rbm/checkpoint/rbm2/checkpoint/step6000-worker0.bin" | ||
checkpoint_path: "examples/rbm/checkpoint/rbm3/checkpoint/step6000-worker0.bin" | ||
alg: kBP | ||
updater{ | ||
type: kAdaGrad | ||
learning_rate{ | ||
base_lr: 0.01 | ||
type: kFixed | ||
} | ||
} | ||
|
||
neuralnet { | ||
layer { | ||
name: "data" | ||
type: kShardData | ||
sharddata_conf { | ||
path: "examples/rbm/mnist_train_shard" | ||
batchsize: 1000 | ||
} | ||
exclude: kTest | ||
} | ||
|
||
layer { | ||
name: "data" | ||
type: kShardData | ||
sharddata_conf { | ||
path: "examples/rbm/mnist_test_shard" | ||
batchsize: 1000 | ||
} | ||
exclude: kTrain | ||
} | ||
|
||
layer{ | ||
name:"mnist" | ||
type: kMnist | ||
srclayers: "data" | ||
mnist_conf { | ||
norm_a: 255 | ||
norm_b: 0 | ||
} | ||
} | ||
|
||
layer{ | ||
name: "label" | ||
type: kLabel | ||
srclayers: "data" | ||
} | ||
|
||
layer{ | ||
name: "fc1" | ||
type: kInnerProduct | ||
srclayers:"mnist" | ||
innerproduct_conf{ | ||
num_output: 1000 | ||
} | ||
param{ | ||
name: "w1" | ||
init{ | ||
type: kUniform | ||
low:-0.05 | ||
high:0.05 | ||
} | ||
} | ||
param{ | ||
name: "rb12" | ||
init{ | ||
type: kUniform | ||
low: -0.05 | ||
high:0.05 | ||
} | ||
} | ||
} | ||
|
||
layer{ | ||
name: "sigmoid1" | ||
type: kSigmoid | ||
srclayers:"fc1" | ||
} | ||
layer{ | ||
name: "fc2" | ||
type: kInnerProduct | ||
srclayers:"sigmoid1" | ||
innerproduct_conf{ | ||
num_output: 500 | ||
} | ||
param{ | ||
name: "w2" | ||
init{ | ||
type: kUniform | ||
low:-0.05 | ||
high:0.05 | ||
} | ||
} | ||
param{ | ||
name: "rb22" | ||
init{ | ||
type: kUniform | ||
low: -0.05 | ||
high:0.05 | ||
} | ||
} | ||
} | ||
|
||
layer{ | ||
name: "sigmoid2" | ||
type: kSigmoid | ||
srclayers:"fc2" | ||
} | ||
|
||
layer{ | ||
name: "fc3" | ||
type: kInnerProduct | ||
srclayers:"sigmoid2" | ||
innerproduct_conf{ | ||
num_output: 250 | ||
} | ||
param{ | ||
name: "w3" | ||
init{ | ||
type: kUniform | ||
low:-0.05 | ||
high:0.05 | ||
} | ||
} | ||
param{ | ||
name: "rb32" | ||
init{ | ||
type: kUniform | ||
low: -0.05 | ||
high:0.05 | ||
} | ||
} | ||
} | ||
|
||
layer{ | ||
name: "sigmoid3" | ||
type: kSigmoid | ||
srclayers:"fc3" | ||
} | ||
|
||
layer{ | ||
name: "fc4" | ||
type: kInnerProduct | ||
srclayers:"sigmoid3" | ||
innerproduct_conf{ | ||
num_output: 30 | ||
} | ||
param{ | ||
name: "w4" | ||
init{ | ||
type: kUniform | ||
low:-0.05 | ||
high:0.05 | ||
} | ||
} | ||
param{ | ||
name: "rb42" | ||
init{ | ||
type: kUniform | ||
low: -0.05 | ||
high:0.05 | ||
} | ||
} | ||
} | ||
|
||
layer{ | ||
name: "fc5" | ||
type: kInnerProduct | ||
#srclayers:"sigmoid4" | ||
srclayers:"fc4" | ||
innerproduct_conf{ | ||
num_output: 250 | ||
transpose: true | ||
} | ||
param{ | ||
name: "w5" | ||
share_from: "w4" | ||
} | ||
param{ | ||
name: "rb41" | ||
init{ | ||
type: kUniform | ||
low: -0.05 | ||
high:0.05 | ||
} | ||
} | ||
} | ||
|
||
layer{ | ||
name: "sigmoid5" | ||
type: kSigmoid | ||
srclayers:"fc5" | ||
} | ||
layer{ | ||
name: "fc6" | ||
type: kInnerProduct | ||
srclayers:"sigmoid5" | ||
innerproduct_conf{ | ||
num_output: 500 | ||
transpose: true | ||
} | ||
param{ | ||
name: "w6" | ||
share_from: "w3" | ||
} | ||
param{ | ||
name: "rb31" | ||
init{ | ||
type: kUniform | ||
low: -0.05 | ||
high:0.05 | ||
} | ||
} | ||
|
||
} | ||
|
||
layer{ | ||
name: "sigmoid6" | ||
type: kSigmoid | ||
srclayers:"fc6" | ||
} | ||
layer{ | ||
name: "fc7" | ||
type: kInnerProduct | ||
srclayers:"sigmoid6" | ||
innerproduct_conf{ | ||
num_output: 1000 | ||
transpose: true | ||
} | ||
param{ | ||
name: "w7" | ||
share_from: "w2" | ||
} | ||
param{ | ||
name: "rb21" | ||
init{ | ||
type: kUniform | ||
low: -0.05 | ||
high:0.05 | ||
} | ||
} | ||
|
||
} | ||
|
||
layer{ | ||
name: "sigmoid7" | ||
type: kSigmoid | ||
srclayers:"fc7" | ||
} | ||
layer{ | ||
name: "fc8" | ||
type: kInnerProduct | ||
srclayers:"sigmoid7" | ||
innerproduct_conf{ | ||
num_output: 784 | ||
transpose: true | ||
} | ||
param{ | ||
name: "w8" | ||
share_from: "w1" | ||
} | ||
param{ | ||
name: "rb11" | ||
init{ | ||
type: kUniform | ||
low: -0.05 | ||
high:0.05 | ||
} | ||
} | ||
|
||
} | ||
|
||
layer{ | ||
name: "sigmoid8" | ||
type: kSigmoid | ||
srclayers:"fc8" | ||
} | ||
|
||
layer{ | ||
name: "loss" | ||
type:kEuclideanLoss | ||
srclayers:"sigmoid8" | ||
srclayers:"mnist" | ||
} | ||
} | ||
cluster { | ||
nworker_groups: 1 | ||
nserver_groups: 1 | ||
workspace: "examples/rbm/checkpoint/autoencoder/" | ||
} |
Oops, something went wrong.