News
[2025.09.15] We release model weights [https://huggingface.co/aspiridonov/motovla/tree/main], evaluation and inference code.
[2025.08.04] MotoVLA was accepted in CoRL2025!
MotoVLA
# Clone Repo
git clone --recurse-submodules [email protected]:insait-institute/motovla.git
cd motovla
# Create Conda Env
conda create -n eval python=3.10
conda activate eval
# Install Jax
pip install --upgrade "jax[cuda]==0.6.2" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Install SimplerEnv
pip install -e third_party/SimplerEnv/ManiSkill2_real2sim/
pip install -e third_party/SimplerEnv/
# Install other dependecies
pip install -r requirements.txt
Next, download the model checkpoint from Huggingface repository. Download, the files under checkpoints
directory.
python scripts/download_checkpoint.py
Running a single task in simpler:
python -m scripts.eval --config src/configs/motovla/eval_config.py:task="widowx_carrot_on_plate"
Running full simpler evaluation:
sbatch slurm/eval_simpler_bridge.sh
Run this command and query the model from within the same local network.
python -m scripts.hosting_motovla
@inproceedings{
spiridonov2025generalist,
title={Generalist Robot Manipulation beyond Action Labeled Data},
author={Alexander Spiridonov and Jan-Nico Zaech and Nikolay Nikolov and Luc Van Gool and Danda Pani Paudel},
booktitle={9th Annual Conference on Robot Learning},
year={2025},
url={https://openreview.net/forum?id=ZqBXnR6ppz}
}
This project is licensed under the MIT License. Some source files are derived from code originally licensed under the Apache License, Version 2.0. See LICENSE-APACHE for details.