Skip to content

Using machine learning to speed-up Bayesian inference.

Notifications You must be signed in to change notification settings

igomezv/neuralike

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 

Repository files navigation

arXiv:2405.03293

neuralike

Deep Learning and Genetic Algorithms for Cosmological Bayesian Inference Speed-up

Code of our paper Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up, Physical Review D, 110(8) 083518. Available at https://arxiv.org/abs/2405.03293.

Repository Structure

  • neuralike/
    • NeuraLike.py.- Main class, gathers all other classes.
    • NeuralManager.py.- API class, Manager for neural networks to learn likelihood function over a grid.
    • NeuralNet.py.- Class with neural net architecture in PyTorch.
    • RandomSampling.py.- Creates random samples in the parameter space and evaluates the likelihood in them. This is used to generate the training set for a neural network.
    • pytorchtools.py.- Methods and utilities for PyTorch.

Usage

In the branch neuralike of the repository https://github.com/igomezv/simplemc_tests it is available neuralike integrated within the dynesty library for nested sampling within the SimpleMC cosmological parameter estimation code (https://igomezv.github.io/SimpleMC/).

Acknowledgments

We based our work on the following external codes:

Citation

If you use this work in your research, please cite:

@article{gomez2024neuralike,
  title = {Deep learning and genetic algorithms for cosmological Bayesian inference speed-up},
  author = {G\'omez-Vargas, Isidro and V\'azquez, J. Alberto},
  journal = {Phys. Rev. D},
  volume = {110},
  issue = {8},
  pages = {083518},
  numpages = {15},
  year = {2024},
  month = {Oct},
  publisher = {American Physical Society},
  doi = {10.1103/PhysRevD.110.083518},
  url = {https://link.aps.org/doi/10.1103/PhysRevD.110.083518}
}

If you find useful our nnogada framework for hyperparameter tuning of neural networks with genetic algorithms:

@article{nnogada,
  title={Neural networks optimized by genetic algorithms in cosmology},
  author={Gómez-Vargas, I. and Andrade, J. B. and Vázquez, J. A.},
  journal={Physical Review D},
  volume={107},
  number={4},
  pages={043509},
  year={2023},
  publisher={American Physical Society},
  doi={https://doi.org/10.1103/PhysRevD.107.043509},
  url={https://doi.org/10.48550/arXiv.2209.02685}
}

Releases

No releases published

Packages

No packages published

Languages