Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(metrics): add a classification metrics module #176

Merged
merged 2 commits into from
Dec 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 147 additions & 0 deletions ibis_ml/metrics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import ibis.expr.datatypes as dt


def accuracy_score(y_true: dt.Integer, y_pred: dt.Integer) -> float:
"""Calculate the accuracy score of predicted values against true values.

Parameters
----------
y_true
Table expression column containing the true labels.
y_pred
Table expression column containing the predicted labels.

Returns
-------
float
The accuracy score, representing the fraction of correct predictions.

Examples
--------
>>> import ibis
IndexSeek marked this conversation as resolved.
Show resolved Hide resolved
>>> from ibis_ml.metrics import accuracy_score
>>> ibis.options.interactive = True
>>> t = ibis.memtable(
... {
... "id": range(1, 13),
... "actual": [1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1],
... "prediction": [1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
... }
... )
>>> accuracy_score(t.actual, t.prediction)
┌──────────┐
│ 0.583333 │
└──────────┘
"""
return (y_true == y_pred).mean() # .to_pyarrow().as_py()


def precision_score(y_true: dt.Integer, y_pred: dt.Integer) -> float:
"""Calculate the precision score of predicted values against true values.

Parameters
IndexSeek marked this conversation as resolved.
Show resolved Hide resolved
----------
y_true
Table expression column containing the true labels.
y_pred
Table expression column containing the predicted labels.

Returns
-------
float
The precision score, representing the fraction of true positive predictions.

Examples
IndexSeek marked this conversation as resolved.
Show resolved Hide resolved
--------
>>> import ibis
>>> from ibis_ml.metrics import precision_score
>>> ibis.options.interactive = True
>>> t = ibis.memtable(
... {
... "id": range(1, 13),
... "actual": [1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1],
... "prediction": [1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
... }
... )
>>> precision_score(t.actual, t.prediction)
┌──────────┐
│ 0.666667 │
└──────────┘
"""
true_positive = (y_true & y_pred).sum()
predicted_positive = y_pred.sum()
return true_positive / predicted_positive


def recall_score(y_true: dt.Integer, y_pred: dt.Integer) -> float:
"""Calculate the recall score of predicted values against true values.

Parameters
IndexSeek marked this conversation as resolved.
Show resolved Hide resolved
----------
y_true
Table expression column containing the true labels.
y_pred
Table expression column containing the predicted labels.

Returns
-------
float
The recall score, representing the fraction of true positive predictions.

Examples
--------
>>> import ibis
>>> from ibis_ml.metrics import recall_score
>>> ibis.options.interactive = True
>>> t = ibis.memtable(
... {
... "id": range(1, 13),
... "actual": [1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1],
... "prediction": [1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
... }
... )
>>> recall_score(t.actual, t.prediction)
┌──────────┐
│ 0.571429 │
└──────────┘
"""
true_positive = (y_true & y_pred).sum()
actual_positive = y_true.sum()
return true_positive / actual_positive


def f1_score(y_true: dt.Integer, y_pred: dt.Integer) -> float:
"""Calculate the F1 score of predicted values against true values.

Parameters
IndexSeek marked this conversation as resolved.
Show resolved Hide resolved
----------
y_true
Table expression column containing the true labels.
y_pred
Table expression column containing the predicted labels.

Returns
-------
float
The F1 score, representing the harmonic mean of precision and recall.

Examples
--------
>>> import ibis
>>> from ibis_ml.metrics import f1_score
>>> ibis.options.interactive = True
>>> t = ibis.memtable(
... {
... "id": range(1, 13),
... "actual": [1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1],
... "prediction": [1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
... }
... )
>>> f1_score(t.actual, t.prediction)
┌──────────┐
│ 0.615385 │
└──────────┘
"""
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
return (2 * precision * recall) / (precision + recall)
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ doc = [
"itables",
"jupyter",
"quartodoc",
"scikit-learn",
"scikit-learn<1.6.0",
"skorch",
"torch",
"xgboost",
Expand Down
35 changes: 35 additions & 0 deletions tests/test_metrics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import ibis
import pytest
import sklearn.metrics

import ibis_ml.metrics


@pytest.fixture
def results_table():
return ibis.memtable(
{
"id": range(1, 13),
"actual": [1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1],
"prediction": [1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
}
)


@pytest.mark.parametrize(
"metric_name",
[
pytest.param("accuracy_score", id="accuracy_score"),
pytest.param("precision_score", id="precision_score"),
pytest.param("recall_score", id="recall_score"),
pytest.param("f1_score", id="f1_score"),
],
)
def test_classification_metrics(results_table, metric_name):
ibis_ml_func = getattr(ibis_ml.metrics, metric_name)
sklearn_func = getattr(sklearn.metrics, metric_name)
t = results_table
df = t.to_pandas()
result = ibis_ml_func(t.actual, t.prediction).to_pyarrow().as_py()
expected = sklearn_func(df["actual"], df["prediction"])
assert result == pytest.approx(expected, abs=1e-4)
Loading