-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuperRobot.cpp
638 lines (547 loc) · 19.3 KB
/
superRobot.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
//#include <highgui.h>
//#include <imgproc.hpp>
#include <highgui.hpp>
#include <core.hpp>
//#include <cv.h>
//#include <math.h>
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
using namespace cv;
#define RoadWidthPixel 30
#define VIDEO_PORT 0
void myImagePreProcess(IplImage* pCutFrImg, int otsuT, int roadwidth);
void probabilityOfLine(int x1, int y1, int x2, int y2, int imgWidth, double *lweight, double *rweight, int picHalfHeight);
int Otsu(IplImage* src);
void fixSingleLine(int type, double *k, double *x, double k1);
bool stateCheck(IplImage *src, double *kFinal, double *k1Final, double *distance);
void turnLeft();
void turnRight();
//离散高斯分布数组
double Gussian_left[20] = { 1.0000, 0.9802, 0.9231, 0.8353, 0.7261, 0.6065, 0.4868, 0.3753, 0.2780, 0.1979,0.1353,0.0889,0.0561,0.0340,0.0198,0.0111,0.0060,0.0031,0.0015,0.0007 };//10段
double Gussian_right[20] = { 1.0000, 0.9802, 0.9231, 0.8353, 0.7261, 0.6065, 0.4868, 0.3753, 0.2780, 0.1979, 0.1353, 0.0889, 0.0561, 0.0340, 0.0198, 0.0111, 0.0060, 0.0031, 0.0015, 0.0007 };// 0.01, 0.03, 0.034, 0.044, 0.05, 0.058, 0.063, 0.07, 0.077, 0.1,
double Gussian_backup[20] = { 1.0000, 0.9802, 0.9231, 0.8353, 0.7261, 0.6065, 0.4868, 0.3753, 0.2780, 0.1979,0.1353,0.0889,0.0561,0.0340,0.0198,0.0111,0.0060,0.0031,0.0015,0.0007 };//10段
int u1 = 4;//左车道
int u2 = 15;//右车道
double k1 = 100;//左车道初始斜率
double k2 = -100;//右车道初始斜率
//1放得是y值小的那个 2是y值大的那个
CvPoint l_line1, l_line2;
CvPoint r_line1, r_line2;
//车道线的实际像素宽度
int l1;
// 这两个变量应该是与每一帧绑定,自适应变化的
double kForEmergency = 0.9;
double turnValue = l1 / 10;
//ground truth for line of road
CvPoint gr_l_point1, gr_l_point2;
CvPoint gr_r_point1, gr_r_point2;
CvSize frameSize;
// 设置尺寸裁剪掉天空
int cutWidth = 1;
int cutHeight = 400;
//car's direction
enum directionState { lEft, rIght, sTraight, bAck, sTop };
enum directionState carS = sTraight;
bool turnAround = false;
int currentX = 90; // 作为串口控制指令X坐标的初始值
ofstream out("/dev/ttyUSB0");
//int hough()
int main(int argc, char** argv)
{
VideoCapture capture(VIDEO_PORT);
if (!capture.isOpened()) {
cout << "nani??" << endl;
return -1;
}
if (out.is_open()) { // 通向树莓派的串口输出打开
Mat srcFrame;
for (int i = 0; i < 10; i++) {
capture >> srcFrame;
}
bool is_open = true;
while (is_open) {
capture >> srcFrame;
IplImage temp = (IplImage)IplImage(srcFrame);
IplImage *pBinary = &temp;
IplImage *src = cvCloneImage(pBinary);
//src = cvLoadImage("road8.jpg");
src = cvLoadImage("fig1.png");
cout << "src 的两个数据是" << src->width << " " << src->height << endl;
cvSetImageROI(src, cvRect(cutWidth, cutHeight, src->width - cutWidth, src->height - cutHeight));
frameSize = cvGetSize(src);
cout << frameSize.width << " " << frameSize.height << endl;
//计算l1 车道的实际宽度
l1 = frameSize.width * 11 / 12;//~~~~~~~~~~~~~!!!!!!!!!!!!!!!!!!!!!!!!!!!~~~~~~~~~~~~~~~~~
double kFinal = 0, k1Final = 0, distance = 0;
bool lineFound = false;
lineFound = stateCheck(src, &kFinal, &k1Final, &distance); // 当两侧道路线同时找到,返回真,否则返回假
// 接下来进行控制
cout << "After stateCheck" << endl;
if (!turnAround) {
if (!lineFound) { // 没找到,维持直行,不可转弯
if (carS != sTraight) {
//cGoStraight();
//cSetSpeed(1);
carS = sTraight;
cout << "Keep going straight" << endl;
}
}
else if (distance > turnValue) { // 车辆运行方位偏离中线左侧超出阈值
cout << "state is turning left" << endl;
if (carS != lEft) {
carS = lEft;
cout << "Turn Left" << endl;
turnLeft();
}
if (k1Final >= kForEmergency) {// 右侧直线过陡,说明车过于靠近右侧车道
cout << "!!!!!!!!!!!!!!!!!!!!!!!!!!! keep go left !!!!!!!!!!!!!!!!!!!!!!!!!!!";
}
}
else if (distance < -turnValue) {
cout << "state is turning right" << endl;
if (carS != rIght) {
carS = rIght;
cout << "Turn Right" << endl;
turnRight();
}
if (kFinal <= -kForEmergency) {
cout << "!!!!!!!!!!!!!!!!!!!!!!!!!! keep go right !!!!!!!!!!!!!!!!!!!!!!!!!!!";
}
}
else if (carS != sTraight) { // 摆正车头
carS = sTraight;
cout << "Keep going straight" << endl;
}
// 刹车
}
else if (turnAround) {
cout << "Turn around!" << endl;
}
cout << "end of while" << endl;
//cvNamedWindow("Hough", 1);
//cvShowImage("Hough", src);
//cvWaitKey(0);
/* for (int i = 0; i < 100; i++)
{
cout << "Waiting for next frame count " << i << endl;
}*/
} // end of while
}
return 0;
}
int Otsu(IplImage* src) // 返回的是最大类间方差对应的灰度
{
int height = src->height;
int width = src->width;
//histogram
float histogram[256] = { 0 };
for (int i = 0; i < height; i++)
{
unsigned char* p = (unsigned char*)src->imageData + src->widthStep * i;
for (int j = 0; j < width; j++)
{
histogram[*p++]++;
}
}
//normalize histogram
int frameSize = height * width;
for (int i = 0; i < 256; i++)
{
histogram[i] = histogram[i] / frameSize;
}
//average pixel value
float avgValue = 0;
for (int i = 0; i < 256; i++)
{
avgValue += i * histogram[i]; //整幅图像的平均灰度
}
int threshold;
float maxVariance = 0;
float w = 0, u = 0;
for (int i = 0; i < 256; i++)
{
w += histogram[i]; //假设当前灰度i为阈值, 0~i 灰度的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的比例
u += i * histogram[i]; // 灰度i 之前的像素(0~i)的平均灰度值: 前景像素的平均灰度值
float t = avgValue * w - u;
float variance = t * t / (w * (1 - w));
if (variance > maxVariance)
{
maxVariance = variance; // 找到最大方差
threshold = i; // 找到最大方差对应的当前灰度
}
}
return threshold;
}
void myImagePreProcess(IplImage* pCutFrImg, int otsuT, int roadwidth) {
//uchar* data = (uchar *)pCutFrImg->imageData;
//int step = pCutFrImg->widthStep / sizeof(uchar);
int T = 0.5* otsuT;
uchar* tmp;
int l = roadwidth;//车道像素宽度
int c = 0;
int N = pCutFrImg->height;
int M = pCutFrImg->width;
double mean1 = 0, mean2 = 0;//mean1 for pi mean2 for pj
for (int y = 0; y<N; y++)
for (int x = 0; x < M; x++)
{
mean1 = 0; mean2 = 0;
tmp = &((uchar *)(pCutFrImg->imageData + y * pCutFrImg->widthStep))[x];
//tmp = cvGet2D(pCutFrImg, y, x).val[0];
c = y * 0.5*l / (M - 1) + 0.5*l;
if (y<N - c && y>c) {
for (int i = y - c; i < y; i++) {//计算mean(V(x,pi))
if (i<N && i >= 0)
mean1 += ((uchar *)(pCutFrImg->imageData + i * pCutFrImg->widthStep))[x];//cvGet2D(pCutFrImg, i, x).val[0];
}
mean1 /= c;
for (int i = y; i < y + c; i++) {//计算mean(V(x,pj))
if (i<N && i >= 0)
mean2 += ((uchar *)(pCutFrImg->imageData + i * pCutFrImg->widthStep))[x];//cvGet2D(pCutFrImg, i, x).val[0];
}
mean2 /= c;
if (*tmp>mean1 + T && *tmp>mean2 + T) {
*tmp = 255;
}
else
{
*tmp = 0;
}
}
else if (y >= N - c) {
for (int i = y - c; i < y; i++) {//计算mean(V(x,pi))
if (i<N && i >= 0)
mean1 += ((uchar *)(pCutFrImg->imageData + i * pCutFrImg->widthStep))[x];//cvGet2D(pCutFrImg, i, x).val[0];
}
mean1 /= c;
if (*tmp>mean1 + T) {
*tmp = 255;
}
else
{
*tmp = 0;
}
}
else
{
for (int i = y; i < y + c; i++) {//计算mean(V(x,pj))
if (i<N && i >= 0)
mean2 += ((uchar *)(pCutFrImg->imageData + i * pCutFrImg->widthStep))[x];//cvGet2D(pCutFrImg, i, x).val[0];
}
mean2 /= c;
if (*tmp>mean2 + T) {
*tmp = 255;
}
else
{
*tmp = 0;
}
}
}
}
// 适应性查找入口算法中使用此函数 计算 线是道路线的概率
void probabilityOfLine(int x1, int y1, int x2, int y2, int imgWidth, double *lweight, double *rweight, int picHalfHeight) {
double k = ((y1 - y2)*1.0 / (x1 - x2));
double b = y1 - k * x1;
double b1 = (picHalfHeight - b) / k; //y==half height时,x的坐标,用于权值判断
double maxX = x1 > x2 ? x1 : x2;
double minX = x1 < x2 ? x1 : x2;
int margin;
b1 = b1 > 0 ? b1 : -b1;
int d = (int)(b1 / imgWidth * 20);
if (k<-0.17 && k>-2) {
*rweight = 0;
margin = d > u1 ? d - u1 : u1 - d;
if (margin > 19) {
margin = 19;
}
*lweight = Gussian_left[margin];
Gussian_left[margin] = 0;
return;
}
else {
*lweight = 0;
}
if (k>0.17 && k<2) {
*lweight = 0;
margin = d > u2 ? d - u2 : u2 - d;
if (margin>19) {
margin = 19;
}
*rweight = Gussian_right[margin];
Gussian_right[margin] = 0;
}
else {
*rweight = 0;
}
}
// 修正路线 type为0 表示左边的线, type为1 表示右边的线
void fixSingleLine(int type, double *k, double *x, double k1) {//type ==0 , know left line; type==1 , know right line
//ground truth of right line
double krt = (gr_r_point1.y*1.0 - gr_r_point2.y) / (gr_r_point1.x*1.0 - gr_r_point2.x); //ground truth's k
//double brt = gr_r_point1.y - krt * gr_r_point1.x;
//ground truth of left line
double klt = (gr_l_point1.y*1.0 - gr_l_point2.y) / (gr_l_point1.x*1.0 - gr_l_point2.x); //ground truth's k
//double blt = gr_l_point1.y - klt * gr_l_point1.x;
if (type == 1) {//detected right line
//calculate the rotated angle
double theate = -(atan(krt) - atan(k1));
//translation to origin
double tempx = gr_l_point2.x - gr_l_point1.x;
double tempy = gr_l_point2.y - gr_l_point1.y;
//translate
double transx = tempx * cos(theate) - tempy * sin(theate);
double transy = tempx * sin(theate) + tempy * cos(theate);
//translation back to what it was
double backx = transx + gr_l_point1.x;
double backy = transy + gr_l_point1.y;
//result
*k = (backy - gr_l_point1.y) / (backx - gr_l_point1.x);
double tempb = gr_l_point1.y - *k * gr_l_point1.x;
*x = (frameSize.height / 2 - tempb) / *k;
}
else if (type == 0) {//detected left line
//calculate the rotated angle
double theate = -(atan(klt) - atan(k1));
//translation to origin
double tempx = gr_r_point2.x - gr_r_point1.x;
double tempy = gr_r_point2.y - gr_r_point1.y;
//translate
double transx = tempx * cos(theate) - tempy * sin(theate);
double transy = tempx * sin(theate) + tempy * cos(theate);
//translation back to what it was
double backx = transx + gr_r_point1.x;
double backy = transy + gr_r_point1.y;
//result
*k = (backy - gr_r_point1.y) / (backx - gr_r_point1.x);
double tempb = gr_r_point1.y - *k * gr_r_point1.x; // 图像预处理
*x = (frameSize.height / 2 - tempb) / *k;
}
}
bool stateCheck(IplImage *src, double *kFinal, double *k1Final, double *distance) {
// 灰度化
IplImage *grayImage = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
cvCvtColor(src, grayImage, CV_BGR2GRAY);
// 使用大津算法计算对称阈值切割的阈值
int otsuThreshold = Otsu(grayImage);
// 创建结果图像
IplImage* dst = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
CvMemStorage *storage = cvCreateMemStorage(0);
CvSeq *lines = 0;
myImagePreProcess(grayImage, otsuThreshold, RoadWidthPixel);
cvCanny(src, dst, 300, 500, 3); //首先运行边缘检测,结果以灰度图显示(只有边缘) 两个阈值,小的控制边缘连接,大的控制强边缘的初始分割
lines = cvHoughLines2(dst, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI / 180, 50, 30, 5); // 距离精度, 角度精度, 阈值参数, 最小线段长度, 碎线段最大间隔值
double bLeftMax = 0, bRightMax = 0;
bool lineFound = true;
//循环直线序列
// 处理一帧图像中所有的直线,得到两条道路线的方程(k和b)
for (int i = 0; i < lines->total; i++) //lines存储的是直线
{
CvPoint* line = (CvPoint*)cvGetSeqElem(lines, i); //lines序列里面存储的是像素点坐标
double k = ((line[0].y - line[1].y)*1.0 / (line[0].x - line[1].x));
double lweight = 0;
double rweight = 0;
double l_total_weight = 0;
double r_total_weight = 0;
double maxLP = 0;
double maxRP = 0;
int l_num = 0;
int r_num = 0;
// 计算这条线段是车道线的概率
probabilityOfLine(line[0].x, line[0].y, line[1].x, line[1].y, frameSize.width, &lweight, &rweight, frameSize.height / 2);
//画出直线
l_line1 = cvPoint(0, 0);//1 is the smaller one, 2 is the bigger one
l_line2 = cvPoint(0, 0);
r_line1 = cvPoint(0, 0);
r_line2 = cvPoint(0, 0);
if (lweight>0) {
//cvLine(pCutFrame, line[0], line[1], CV_RGB(255, 0, 0), 6, CV_AA);
if (maxLP<lweight)
maxLP = lweight;
l_total_weight += lweight;
l_num++;
if (line[0].y < line[1].y) {
l_line1.y += line[0].y *lweight;
l_line1.x += line[0].x *lweight;
l_line2.y += line[1].y *lweight;
l_line2.x += line[1].x *lweight;
}
else
{
l_line1.y += line[1].y *lweight;
l_line1.x += line[1].x *lweight;
l_line2.y += line[0].y *lweight;
l_line2.x += line[0].x *lweight;
}
}
else if (rweight>0) {
if (maxRP < rweight)
maxRP = rweight;
r_total_weight += rweight;
r_num++;
if (line[0].y < line[1].y) {
r_line1.y += line[0].y *rweight;
r_line1.x += line[0].x *rweight;
r_line2.y += line[1].y *rweight;
r_line2.x += line[1].x *rweight;
}
else {
r_line1.y += line[1].y *rweight;
r_line1.x += line[1].x *rweight;
r_line1.y += line[0].y *rweight;
r_line1.x += line[0].x *rweight;
}
}
if (l_total_weight > 0) {//归一化
l_line1.x /= (l_total_weight);
l_line1.y /= (l_total_weight);
l_line2.x /= (l_total_weight);
l_line2.y /= (l_total_weight);
}
if (r_total_weight>0) {//归一化
r_line1.x /= (r_total_weight);
r_line1.y /= (r_total_weight);
r_line2.x /= (r_total_weight);
r_line2.y /= (r_total_weight);
}
/*/begin------------------------------------------ for test
if (l_total_weight > 0)
cvLine(src, l_line1, l_line2, CV_RGB(255, 0, 0), 10, CV_AA);
if (r_total_weight > 0)
cvLine(src, r_line1, r_line2, CV_RGB(255, 0, 0), 10, CV_AA);
//end------------------------------------------ for test */
//cvLine(src, line[0], line[1], CV_RGB(255, 0, 0)); //将找到的直线标记为绿色
//color_dst是三通道图像用来存直线图像
// Gussian_weight 高斯加权道路线补齐
//re-initialize the gussian-array
for (int e = 0; e<20; e++) {
Gussian_right[e] = Gussian_backup[e];
Gussian_left[e] = Gussian_backup[e];
}
//-----------------------------------------
bool f1 = false, f2 = false; // 表示左右两个直线是否找到
double k1 = 0; // 左直线斜率 k 右直线斜率 k1
double b, b1; // 两个直线方程的b值
double x01 = 0, x02 = 0, centerx = 0;
double distance = 0;
//fittable parameter for control the car
int turnValue = l1 / 10;
int adjustValue = l1 * 3 / 2;
int axisValue = l1 * 5 / 16;
int abanValue = l1 / 4;
double kValue = 0.2;
double kForEmergency = 0.9;
//calculate line that detected
if (l_total_weight>0) {
k = (l_line1.y *(1.0) - l_line2.y) / (l_line1.x *(1.0) - l_line2.x); // 求出左边直线的斜率
b = l_line1.y *1.0 - k * l_line1.x; // b = y - kx
x01 = (frameSize.height / 2 - b) / k; // x01 是图像水平方向的中线(从height的中点向右平行于width方向)与左直线交点的横坐标
f1 = true; // 找到左直线,下面右直线操作同理
}
if (r_total_weight>0) {
k1 = (r_line1.y *(1.0) - r_line2.y) / (r_line1.x *(1.0) - r_line2.x); // 右直线的斜率是k1
b1 = r_line1.y *1.0 - k1 * r_line1.x;
x02 = (frameSize.height / 2 - b1) / k1;
f2 = true;
}
cout << "\n\n\nk and k1 are " << k << " " << k1 << endl;
//to make two line
if (!f1) { // 如果未找到左直线
if (f2) { // 但是找到了右直线
//x01 = x02 - adjustValue; 用的是梯形中位线性质
//k = -k1;
// << "In 1, k and k1 are " << k << " " << k1 << endl;
printf("1\n");
fixSingleLine(1, &k, &x01, k1);
b = frameSize.height / 2 - k * x01;
//centerx = (b1 - b) / (k - k1);
//distance = (frameSize.width / 2 - centerx); // centerx 和 distance的含义不太理解
//cout << "1 frameSize.width = " << frameSize.width << " centerx = " << centerx << endl;
}
else {
//go straight
lineFound = false; // 两个直线都没有找到
printf("2\n");
}
}
else { // 找到了左直线
if (!f2) { // 但是没找到右直线
//x02 = x01 + adjustValue;
//k1=-k;
printf("3\n");
fixSingleLine(0, &k1, &x02, k);
b1 = frameSize.height / 2 - k1 * x02;
//centerx = (b1 - b) / (k - k1);
//distance = (frameSize.width / 2 - centerx);
//cout << "3, frameSize.width = " << frameSize.width << " centerx = " << centerx << endl;
}
else { // 左右两个直线都找到了
printf("4\n");
if (x02 - x01 - l1 > axisValue || x02 - x01 - l1 < -axisValue) {// use probability to adjust when two line detected
if (maxLP > maxRP) {//l_total_weight/l_num > r_total_weight/r_num
x02 = x01 + adjustValue;
k1 = -k;
}
else {
x01 = x02 - adjustValue;
k = -k1;
}
}
//centerx = (x01 + x02) / 2;
//distance = (frameSize.width / 2 - centerx);
//cout << "4 frameSize.width = " << frameSize.width << " centerx = " << centerx << endl;
}
}
//-----------------------------------------for test
if (lineFound) { // 直线找到
if (k == 0 || k1 == 0)
return false;
else {
b = frameSize.height / 2 - k * x01;
b1 = frameSize.height / 2 - k1 * x02;
if (bLeftMax < b) {
bLeftMax = b;
*kFinal = k;
}
if (bRightMax > b1) {
bRightMax = b1;
*k1Final = k1;
}
} // end of else
//printf("left: %f x + %d \n", k, b);
//printf("right: %f x + %d \n", k1, b1);
//printf("\n\n");
} // end of if
//else {
//return false;
//}
}
cout << "kFinal and k1Final are " << *kFinal << " " << k1Final << endl;
printf("(0, bLeftMax) (-bLeftMax/kFinal, 0) is (0, %f) (%f, 0)\n\n", bLeftMax, -bLeftMax / *kFinal);
printf("(0, bRightMax) (-bRightMax/k1Final, 0) is (0, %f) (%f, 0)", bRightMax, -bRightMax / *k1Final);
cvLine(src, cvPoint(0, (int)bLeftMax), cvPoint((int)-bLeftMax / *kFinal, 0), CV_RGB(150, 10, 10), 5, CV_AA); // 左直线
cvLine(src, cvPoint(0, (int)bRightMax), cvPoint(src->width, *k1Final * src->width + bRightMax), CV_RGB(150, 10, 10), 5, CV_AA); // 右直线
cvLine(src, cvPoint(0, frameSize.height / 2), cvPoint(frameSize.width, frameSize.height / 2), CV_RGB(150, 10, 10), 5, CV_AA); // 中心线
double x1 = (frameSize.height / 2 - bLeftMax) / *kFinal; // 中位线左交点
double x2 = (frameSize.height / 2 - bRightMax) / *k1Final; // 右交点
double centerX = (x1 + x2) / 2; // 中位线的中点 即道路中央
*distance = (frameSize.width / 2 - centerX); // 车辆航行中心线和道路中央的偏移距离
cout << "\n\ndistance to the middle is " << distance << endl;
return true;
}
void turnLeft() {
currentX -= 5;
cout << "Turning left!! current X is" << currentX << endl;
string output = "$AP0:", tempX = to_string(currentX);
output = output + tempX + "X254Y127A127B!";
out << output << endl;
}
void turnRight() {
currentX += 5;
cout << "Turning left!! current X is" << currentX << endl;
string output = "$AP0:", tempX = to_string(currentX);
output = output + tempX + "X254Y127A127B!";
out << output << endl;
}