- Human Action Video Dataset
- Awesome-Video-Datasets [Video Dataset Overview]
- VOT Challenge [VOT git repos]
- TAO: A Large-Scale Benchmark for Tracking Any Object (ECCV2020)
- MOT challenge: Multiple Object Tracking Benchmark!
[👍Martin Danelljan] [VIS Lab People]
- (B站) 2019-2020年目标跟踪资源全汇总(论文、模型代码、优秀实验室)
- (B站) 张志鹏:Ocean/Ocean+:实时目标跟踪分割算法,小代价,大增益
- (github) Visual Tracking Paper List
- (github) PyQt5_YoLoV5_DeepSort
- (github) [YOLOv5 + DeepSORT] Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数
- (github) [YOLOv5 + DeepSORT] Real-time multi-object tracker using YOLO v5 and deep sort[Evaluation Page]
- (github) [Official DeepSort] MOT tracking using deepsort and yolov3 with pytorch
- (github) [YOLOv5 + SORT] ClassySORT is a simple real-time multi-object tracker (MOT)
- (github) [FastMOT] High-performance multiple object tracking based on YOLO, Deep SORT, and KLT
- (github} [IJCV-2021] FairMOT: On the Fairness of Detection and Re-Identification in Multi-Object Tracking
- (arxiv) CountingMOT: Joint Counting, Detection and Re-Identification for Multiple Object Tracking
- FlowNet2.0(CVPR2017) FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks [arxiv link][Codes|PyTorch(offical)]
- SiamMask(CVPR2019) Fast Online Object Tracking and Segmentation: A Unifying Approach [arxiv link][project link][Codes|PyTorch(offical)][blog in wechat][blog in bilibili]
- ECO(CVPR2017) ECO: Efficient Convolution Operators for Tracking [arxiv link][Codes|Matlab(offical)][Codes|MXNet(unoffical)][CSDN blog]
- SiamCAR(CVPR2020) SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking [arxiv link][cvpr link][Codes|offical PyTorch]
Point tracking is a new field with a few notable works released around the same time.
-
PIPs(ECCV2022 Oral)(arxiv2022.04) Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories [paper link][arxiv link][project link][code|official][
Carnegie Mellon University
][It was an inspiration for the workTAPIR
] -
👍OmniMotion(ICCV2023 Oral, Best Student Paper)(arxiv2023.06) Tracking Everything Everywhere All at Once [paper link][arxiv link][project link][code|official][
Cornell University + Google Research + UC Berkeley
][It doesn't perform as well asTAPIR
and is substantially slower, but it providespseudo-3D reconstructions
, and could potentially be used on top of TAPIR tracks to further improve performance.] -
TAPIR(ICCV2023)(arxiv2023.06) TAPIR: Tracking Any Point with per-frame Initialization and temporal Refinement [paper link][arxiv link][project link][code|official][
Google DeepMind + University of Oxford
] -
MFT(WACV2024)(arxiv2023.05) MFT: Long-Term Tracking of Every Pixel [paper link][arxiv link][project link][code|official][
Czech Technical University in Prague
][Multi-Flow Tracking
hypothesizes many flow fields between different pairs of frames and scores them; multiple hypotheses leads to improved robustness.] -
LEAP-VO(CVPR2024)(arxiv2024.01) LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry [paper link][arxiv link][project link][code|official][
TU Munich + Munich Center for Machine Learning + MPI for Intelligent Systems + Microsoft
][Tracking + Visual Odometry
, Long-term Effective Any Point Tracking (LEAP)] -
👍CoTracker(ECCV2024)(arxiv2023.07) CoTracker: It is Better to Track Together [paper link][arxiv link][project link][code|official][
Meta AI + Visual Geometry Group, University of Oxford
] -
👍DINO-Tracker(ECCV2024)(arxiv2024.03) DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video [paper link][arxiv link][project link][code|official][
Weizmann Institute of Science, Israel
] -
BootsTAP(arxiv2024.02) BootsTAP: Bootstrapped Training for Tracking-Any-Point [arxiv link][project link][code|official][
Google DeepMind + University of Oxford
][It is based on theTAPIR
] -
**** [paper link][arxiv link][project link][code|official]