Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 27 additions & 0 deletions Anomalía.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# fgme_ai_security.py
import json
import numpy as np
from sklearn.ensemble import IsolationForest
import joblib

class FGME_AI_Security:
def __init__(self, model_path="fgme_ai_model.pkl"):
try:
self.model = joblib.load(model_path)
except:
self.model = IsolationForest(n_estimators=100, contamination=0.05)
self.model.fit(np.random.rand(100, 5)) # Entrenamiento inicial con datos simulados
joblib.dump(self.model, model_path)

def analizar_evento(self, evento: dict):
vector = np.array([[evento["cpu"], evento["mem"], evento["net"], evento["disk"], evento["proc"]]])
score = self.model.decision_function(vector)[0]
riesgo = self.model.predict(vector)[0] # -1 = sospechoso
return {"riesgo": "ALTO" if riesgo == -1 else "BAJO", "score": score}

# Ejemplo de uso
if __name__ == "__main__":
ai = FGME_AI_Security()
evento = {"cpu": 0.9, "mem": 0.8, "net": 0.95, "disk": 0.7, "proc": 0.85}
resultado = ai.analizar_evento(evento)
print(json.dumps(resultado, indent=2))