Skip to content
Open
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 42 additions & 0 deletions genlm/backend/llm/hf.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,48 @@ def from_name(cls, model_id, bitsandbytes_opts=None, hf_opts=None, **kwargs):

return cls(mod, tok, **kwargs)

# @classmethod
# def from_name(cls, model_id, bitsandbytes_opts=None, hf_opts=None, **kwargs):

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What's with all this commented out code?

# """Create an AsyncTransformer instance from a pretrained HuggingFace model.

# Args:
# model_id (str): Model identifier in HuggingFace's model hub.
# bitsandbytes_opts (dict, optional): Additional configuration options for bitsandbytes quantization.
# Defaults to None.
# hf_opts (dict, optional): Additional configuration options for loading the HuggingFace model.
# Defaults to None.
# **kwargs: Additional arguments passed to the `AsyncTransformer` constructor

# Returns:
# (AsyncTransformer): An initialized `AsyncTransformer` instance.
# """
# if bitsandbytes_opts:
# bnb_config = BitsAndBytesConfig(**bitsandbytes_opts)
# else:
# bnb_config = None

# _hf_opts = {
# "device_map": "auto",
# "torch_dtype": "auto",
# }
# if hf_opts:
# _hf_opts.update(hf_opts)

# tok = AutoTokenizer.from_pretrained(model_id)
# # model_kwargs = _hf_opts
# # if bnb_config:
# # model_kwargs["quantization_config"] = bnb_config # pass the bnb configuration as an hf parameter
# # mod = AutoModelForCausalLM.from_pretrained(
# # model_id, **model_kwargs
# # )
# mod = AutoModelForCausalLM.from_pretrained(
# model_id, quantization_config=bnb_config, **_hf_opts
# )



# return cls(mod, tok, **kwargs)

@torch.no_grad()
def __init__(self, hf_model, hf_tokenizer, batch_size=20, timeout=0.02):
"""Initialize an AsyncTransformer instance.
Expand Down
285 changes: 283 additions & 2 deletions genlm/backend/llm/vllm.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
FORCE_V0 = True #Currently, we force thw model to use V0, to switch to V1 simply set this to False

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nitpicky typo comments: thw. Also conventionally there's a space after the #

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

More importantly... I'm not thrilled about this hardcoded constant where you have to change the source code for any of the code you've added to be reachable.

LOGPROBS_PER_REQUEST = 256 #These are th elogprobs that are retrieved currently in V1

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same comment as above RE #, also th e.


from syslog import LOG_PERROR
import torch
import logging
import warnings
Expand All @@ -6,9 +10,15 @@
from genlm.backend.cache import OutputCache

try:
from vllm import AsyncLLMEngine, SamplingParams, AsyncEngineArgs
from vllm import AsyncLLMEngine, SamplingParams
from vllm.utils import Counter
from vllm.inputs import TokensPrompt
from vllm import envs

if envs.VLLM_USE_V1: #The import is different iin V1 and V0
from vllm.engine.arg_utils import AsyncEngineArgs
else:
from vllm import AsyncEngineArgs

from vllm.distributed.parallel_state import (
destroy_model_parallel,
Expand Down Expand Up @@ -37,7 +47,278 @@ def from_name(cls, *args, **kwargs): # pragma: no cover
"to use the vLLM-based AsyncLM model."
)

else:
elif envs.VLLM_USE_V1 and not FORCE_V0: #If V1

logging.getLogger("vllm.engine.async_llm_engine").setLevel(logging.WARNING)

class AsyncVirtualLM(AsyncLM):
default_params = {
"max_tokens": 1,
"n": 1,
"detokenize": False,
"stop": None,
"ignore_eos": True,
"logprobs": LOGPROBS_PER_REQUEST, # This parameter fixes the number of requested logprobs.
}

def __init__(self, async_llm_engine, cache_size=0, cache_opts={}):
"""Initialize an `AsyncVirtualLM` instance.

Args:
async_llm_engine (AsyncLLMEngine): The async vLLM engine instance.
cache_size (int, optional): Maximum size of the output cache. If 0, caching is disabled. Defaults to 0.
cache_opts (dict, optional): Additional options to pass to the [`OutputCache`][genlm.backend.cache.OutputCache] constructor. Defaults to {}.

Note:
The cache stores the log probabilities for previously seen token sequences to avoid redundant requests. KV caching is handled internally by the vLLM engine.
"""
self.async_llm_engine = async_llm_engine
# Wrap v1 tokenizer to be compatible with base class
self.tokenizer = self._wrap_tokenizer(async_llm_engine.tokenizer)
self.request_counter = Counter()
self.cache = (
OutputCache(maxsize=cache_size, **cache_opts)
if cache_size > 0
else None
)

async_llm_engine.log_stats = False

super().__init__(tokenizer=self.tokenizer)

def _wrap_tokenizer(self, tokenizer):
"""Wrap v1 tokenizer to be compatible with base class expectations.
Note that in V1 async_llm_engine.tokenizer is a TokenizerGroup object"""
class TokenizerWrapper:
def __init__(self, tokenizer):
# Access the underlying tokenizer from TokenizerGroup
self._tokenizer = getattr(tokenizer, 'tokenizer', tokenizer)
# Add compatibility attributes
self.is_fast = True # Assume fast tokenizer for v1
self.name_or_path = getattr(self._tokenizer, 'name_or_path', 'unknown')

def __getattr__(self, name): # Retrieve the tokenizer from the TokenizerGroup object
return getattr(self._tokenizer, name)

def __len__(self):
return len(self._tokenizer)

return TokenizerWrapper(tokenizer)

@classmethod
def from_name(cls, model_name, engine_opts=None, **kwargs):
"""Create a `AsyncVirtualLM` instance from a model name.

Args:
model_name (str): Name of the model to load.
engine_opts (dict): Additional options to pass to the `AsyncLLMEngine`. The engine will be
configured with prefix caching enabled and async output processing disabled by default.
**kwargs: Additional arguments passed to `AsyncVirtualLM` constructor.

Returns:
(AsyncVirtualLM): An `AsyncVirtualLM` instance.

Note: for GPT-OSS, vLLM >= 0.10.2 is required
"""
if not HAS_VLLM:
raise ImportError( # pragma: no cover
"vLLM not available. Install vLLM or use AsyncTransformer instead."
)


if engine_opts is not None and "enable_chunked_prefill" in engine_opts:
if engine_opts["enable_chunked_prefill"]:
warnings.warn( # pragma: no cover
"Setting enable_chunked_prefill to True may interfere with AsyncVirtualLM's "
"custom sampling functionality."
)

engine_opts = {
"enable_prefix_caching": True,
"max_logprobs": LOGPROBS_PER_REQUEST,
# "disable_log_requests": True,
**(engine_opts or {}),
}

engine = AsyncLLMEngine.from_engine_args(
AsyncEngineArgs(model=model_name, tokenizer=model_name, **engine_opts)
)

return cls(engine, **kwargs)

@property
def underlying_model(self):
raise NotImplementedError

@property
def logits_processors(self):
return self._logits_processors

async def next_token_logprobs(self, token_ids):
"""Request log probabilities of next token asynchronously with output caching.

Args:
token_ids_list (list[int]): A list of token IDs, representing a prompt to the language model.

Returns:
result (torch.Tensor): Normalized log probability tensor.
"""
# Note that differently from V0, V1 takes inout string by default
if isinstance(token_ids, str):
key = token_ids
else:
key = tuple(token_ids)

if self.cache is not None and key in self.cache:
return self.cache[key]

result = await self._next_token_logprobs(key)

if self.cache is not None:
self.cache[key] = result

return result

async def _next_token_logprobs(self, token_ids):
"""Request log probabilities of next token asynchronously.

Args:
token_ids_list (list[int]): A list of token IDs, representing a prompt to the language model.

Returns:
(torch.Tensor): Normalized log probability tensor.
"""
req_id = str(next(self.request_counter))
# print(f"request id: {req_id}")
# For v1, use string prompt directly instead of TokensPrompt
if isinstance(token_ids, str):
prompt = token_ids
else:
# Convert token IDs to string for v1 compatibility
prompt = self.tokenizer.decode(token_ids)

outputs = []
async for output in self.async_llm_engine.generate(
prompt=prompt,
sampling_params=SamplingParams(**self.default_params),
request_id=req_id,
):
if output.finished:
outputs.append(output)

if not outputs:
raise RuntimeError("No outputs generated")

# Extract logprobs from the output
# v1 provides logprobs in the output when logprobs parameter is set
output = outputs[0].outputs[0]
logprobs = output.logprobs

assert logprobs
# v1 logprobs format: list of dicts with token_id -> logprob
vocab_size = len(self.tokenizer)
logprobs_tensor = torch.full((1, vocab_size), -float('inf'), dtype=torch.float32)

for token_id, logprob in logprobs[0].items():
#Assign the logprobs to the top-k retrieved tokens in the vocabulary.
if hasattr(logprob, 'logprob'):
logprobs_tensor[0, token_id] = logprob.logprob
else:
logprobs_tensor[0, token_id] = float(logprob)

# Question: do we actually need to renormalize or can we just leave to -inf ??
#Distribute the remaining mass across the tokens that are not in the top-k
non_inf_mask = logprobs_tensor[0] != -float('inf') # create boolean non-inf mask
if non_inf_mask.sum() > 0:
# Get the logprobs for the top-k tokens
top_logprobs = logprobs_tensor[0][non_inf_mask]
remaining_prob = max( 1.0 - torch.exp(top_logprobs).sum().item(),0.0 ) #Compute the remaining probability mass
remaining_tokens = (~non_inf_mask).sum().item() #Compute the number of remaining tokens
uniform_logprob = torch.log(torch.tensor(remaining_prob / remaining_tokens)) #Compute the uniform log probability
logprobs_tensor[0][~non_inf_mask] = uniform_logprob

logprobs = logprobs_tensor
return logprobs[0] # Return shape (vocab_size,) instead of (1, vocab_size)

def next_token_logprobs_sync(self, token_ids): #For now, this simply uses the asynchronous method.
"""Request log probabilities of next token synchronously.

Args:
token_ids_list (list[int]): A list of token IDs, representing a prompt to the language model.

Returns:
(torch.Tensor): Normalized log probability tensor.
"""
import asyncio
return asyncio.run(self.next_token_logprobs(token_ids))


def clear_cache(self):
"""Clear output cache."""
if self.cache:
self.cache.clear()

def __del__(self):
"""Clean up resources on deletion."""
self._cleanup_engine()

def _cleanup_engine(self):
"""Clean up the vLLM engine and associated resources."""
if async_engine := getattr(self, "async_llm", None):
async_engine.shutdown()
destroy_model_parallel()
destroy_distributed_environment()

async def sample(
self,
prompt_token_ids,
max_tokens,
eos_token_ids,
temperature=1.0,
seed=None,
):
"""Sample from the language model.

Args:
prompt_token_ids (list[int]): The token IDs of the prompt.
eos_token_ids (list[int]): The token IDs of the end-of-sequence tokens.
temperature (float, optional): The temperature to use to rescale the logits. Defaults to 1.0.
max_tokens (int): The maximum number of tokens to generate.
seed (int, optional): The seed for the random number generator. Defaults to None.

Returns:
(list[int]): The sampled token IDs.
"""

if isinstance(prompt_token_ids, list):
prompt_token_ids = self.tokenizer.decode(prompt_token_ids)
elif isinstance(prompt_token_ids, str):
pass
else:
raise ValueError(f"Invalid prompt_ids_Type: {type(prompt_token_ids)}")

async for output in self.async_llm_engine.generate(
prompt=prompt_token_ids,
sampling_params=SamplingParams(
n=1,
max_tokens=max_tokens,
temperature=temperature,
seed=seed,
stop=[self.tokenizer.decode([i]) for i in eos_token_ids],
),
request_id=str(next(self.request_counter)),
):
if output.finished:
assert len(output.outputs) == 1, (
"Expected exactly one sequence group"
)
token_ids = list(output.outputs[0].token_ids)
if token_ids[-1] in eos_token_ids:
token_ids = token_ids[:-1]
return token_ids

else: #Otherwise use V0

logging.getLogger("vllm.engine.async_llm_engine").setLevel(logging.WARNING)

class PassThroughLogitsProcessor:
Expand Down
44 changes: 44 additions & 0 deletions notes/Untitled.ipynb

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What's this doing here?

Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "21839ddb-6090-4866-beb4-b24a7c2f4e80",
"metadata": {},
"outputs": [],
"source": [
"import genlm\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ca6090bf-5ef9-45ee-8e15-12c0c9399422",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python genlm",
"language": "python",
"name": "genlm"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Empty file added notes/playground.ipynb

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same question. This seems entirely empty.

Empty file.
Loading