Enterprise-grade LDIF processing for the FLEXT platform
LDIF (LDAP Data Interchange Format) processing library providing RFC 2849/4512 compliant parsing, validation, and server-specific adaptations for enterprise directory migrations and data operations.
pip install flext-ldiffrom flext_ldif import FlextLdif
from pathlib import Path
# Initialize
ldif = FlextLdif()
# Parse LDIF file
result = ldif.parse(Path("directory.ldif"))
if result.is_success:
entries = result.unwrap()
print(f"β
Parsed {len(entries)} entries")
# Access entry data
for entry in entries[:3]:
print(f"DN: {entry.dn.value}")
print(f"ObjectClasses: {entry.get_attribute_values('objectClass')}")
else:
print(f"β Error: {result.error}")- RFC 2849 (LDIF Format) - Full LDIF specification support
- RFC 4512 (Schema) - LDAP schema parsing and validation
- Type Safe - Python 3.13+ with 100% type safety (Pyrefly strict mode)
- Zero Errors - 0 type errors, 0 linting violations
- Well Tested - 1766 passing tests with 78% coverage
- Production Ready - Used in enterprise Oracle directory migrations
- Oracle OID/OUD - Full Oracle Internet/Unified Directory support
- OpenLDAP 1.x/2.x - Traditional and cn=config formats
- Active Directory - Microsoft AD-specific adaptations
- 389 Directory Server - Red Hat directory support
- Generic RFC - Works with any RFC-compliant LDAP server
- Universal Conversion Matrix - NΓN server conversions via RFC intermediate format
- DN Case Registry - Canonical DN case tracking for OUD compatibility
- Auto-Detection - Automatic LDAP server type detection
- Relaxed Mode - Lenient parsing for broken/non-compliant LDIF files
- Batch Processing - Memory-efficient processing for large files
- FLEXT Integration - Railway-oriented programming with FlextResult[T]
- Getting Started - Installation, configuration, and basic usage
- API Reference - Complete API documentation
- Architecture - System design and patterns
- Configuration - Configuration options and customization
- Integration Guide - Integration with other systems
- Migration Guide - Upgrade from v0.9 to v1.0
- Troubleshooting - Common issues and solutions
ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ
β RFC 2849 ββββββΆβ Quirks ββββββΆβ Target β
β Parsing β β System β β Format β
β β β (OID/OUD/AD) β β β
ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ
β β β
βββββββββββββββββββββββ΄ββββββββββββββββββββββ
Railway-Oriented Error Handling
(FlextResult[T])
Design Principles:
- RFC-First - RFC compliance as foundation
- Pluggable Quirks - Server-specific extensions
- Railway Pattern - Composable error handling
- Clean Architecture - Clear layer separation
- Type Safety - 100% type coverage
from flext_ldif import FlextLdif
from pathlib import Path
ldif = FlextLdif()
# Automatically detect server type
result = ldif.parse_with_auto_detection(Path("directory.ldif"))
if result.is_success:
entries = result.unwrap()
# Check detected server
if entries and entries[0].metadata:
print(f"Detected: {entries[0].metadata.quirk_type}")from flext_ldif import FlextLdif
from pathlib import Path
# Initialize FlextLdif API
ldif = FlextLdif()
# Simple migration from Oracle OID to OUD (single output file)
result = ldif.migrate(
input_dir=Path("oid-export"),
output_dir=Path("oud-import"),
from_server="oracle_oid",
to_server="oracle_oud"
)
if result.is_success:
stats = result.unwrap().statistics
print(f"β
Migrated {stats.processed_entries} entries")from flext_ldif import FlextLdif, FlextLdifModels
ldif = FlextLdif()
entries_result = ldif.parse(Path("directory.ldif"))
if entries_result.is_success:
entries = entries_result.unwrap()
# Filter by DN pattern
criteria = FlextLdifModels.FilterCriteria(
filter_type="dn_pattern",
pattern="*,ou=users,dc=example,dc=com",
mode="include"
)
filtered = ldif.filter(entries, criteria)
# Categorize by objectClass
categorized = ldif.categorize(filtered.unwrap())
if categorized.is_success:
result = categorized.unwrap()
print(f"Users: {len(result.users)}")
print(f"Groups: {len(result.groups)}")
print(f"Containers: {len(result.containers)}")from flext_ldif import FlextLdif
from pathlib import Path
ldif = FlextLdif()
# Parse non-compliant LDIF with best-effort recovery
result = ldif.parse_relaxed(Path("broken.ldif"))
if result.is_success:
entries = result.unwrap()
print(f"β
Recovered {len(entries)} entries from broken LDIF")from flext_ldif import FlextLdif
from pathlib import Path
ldif = FlextLdif()
# Build a person entry
person_result = ldif.build(
"person",
cn="John Doe",
sn="Doe",
mail="[email protected]",
base_dn="dc=example,dc=com"
)
if person_result.is_success:
entry = person_result.unwrap()
# Write to file
write_result = ldif.write([entry], Path("output.ldif"))
if write_result.is_success:
print("β
Entry written successfully")# Use FlextProcessors directly for batch processing
from flext_core import FlextProcessors
processor = FlextProcessors()
result = processor.batch_process(entries, transform_func, batch_size=100)from flext_ldif.services.base import QuirkBase
class CustomServerQuirks(QuirkBase):
"""Custom server-specific quirks."""
def __init__(self) -> None:
super().__init__(server_name="custom", priority=50)
def normalize_dn(self, dn: str) -> str:
"""Custom DN normalization."""
return dn.lower()from flext_core import FlextDecorators
# Services automatically use decorators for logging and performance
# Example from internal implementation:
class MyService(FlextService):
@FlextDecorators.log_operation(level="info")
@FlextDecorators.track_performance()
def process(self, data):
# Automatic logging and metrics
pass- Oracle OID β OUD: Migrate Oracle Internet Directory to Unified Directory
- OpenLDAP β 389DS: Migrate between open-source directory servers
- AD β OpenLDAP: Extract and transform Active Directory data
- LDIF Export/Import: Extract directory data for backup or analysis
- Schema Migration: Transfer schema definitions between servers
- ACL Transformation: Convert access control lists between formats
- Test Data Generation: Build LDIF entries programmatically
- Validation: Verify LDIF compliance before importing
- Analysis: Extract statistics and patterns from directory data
flext-ldif is part of the FLEXT platform for enterprise data integration:
- flext-core - Foundation patterns (FlextResult, FlextContainer, FlextProcessors)
- flext-ldap - LDAP client operations
- algar-oud-mig - Production Oracle directory migration project
- flext-tap-ldif - Singer tap for LDIF data extraction
- flext-target-ldif - Singer target for LDIF data loading
- Pydantic v2 - Data validation and settings
- Python 3.13+ - Modern Python features
- dependency-injector - Type-safe dependency injection
# Clone repository
git clone https://github.com/flext/flext-ldif.git
cd flext-ldif
# Install dependencies
make setup
# Run tests
make test
# Run validation (lint + type + test + security)
make validate- Type Safety: Pyrefly strict mode (100% type coverage)
- Linting: Ruff with zero violations
- Testing: 78%+ coverage with 1766+ tests
- Security: Bandit security scanning
- PEP 8: Full compliance
See CONTRIBUTING.md for development guidelines.
MIT License - see LICENSE for details.
Part of the FLEXT Ecosystem - Enterprise data integration platform.
Developed by: FLEXT Core Team Used in production: Oracle directory migrations (1M+ entries) Maintained: Active development and support
- Documentation: docs/
- Issues: https://github.com/flext/flext-ldif/issues
- Discussions: https://github.com/flext/flext-ldif/discussions
- Email: [email protected]
Built on RFC-compliant foundation with conversion matrix for server-to-server transformations:
Core Components:
- RFC 2849 (LDIF Format) - LDIF parsing
- RFC 4512 (Schema) - LDAP schema parsing
- Conversion Matrix - NΓN server conversions via RFC intermediate format
- DN Case Registry - DN case tracking for server compatibility
- Categorized Pipeline - Entry categorization with structured output
- Batch & Parallel Processors - Processing for large datasets
- Event System - Processing lifecycle events
- Filters - Entry filtering and transformation
- Quirks System - Server-specific extensions
Converts between LDAP server quirks using RFC as intermediate format:
Conversion Pattern:
Source Format β Source.to_rfc() β RFC Format β Target.from_rfc() β Target Format
Approach:
- NΓN Matrix: Convert between any server pair with 2ΓN implementations
- RFC Intermediate: Standards-compliant intermediate representation
- DN Consistency: Canonical DN case tracking
- Type Safety: Type annotations with FlextResult error handling
Example:
from flext_ldif.services.conversion import QuirksConversionMatrix
from flext_ldif.servers.ouds import FlextLdifServersOud
from flext_ldif.servers.oid import FlextLdifServersOid
matrix = QuirksConversionMatrix()
oud = FlextLdifServersOud()
oid = FlextLdifServersOid()
# Convert OID attribute to OUD format
oid_attr = "( 2.16.840.1.113894.1.1.1 NAME 'orclGUID' ... )"
result = matrix.convert(oud, oid, "attribute", oid_attr)Ensures DN case consistency during conversions, critical for OUD compatibility:
from flext_ldif.services.dn_case_registry import DnCaseRegistry
registry = DnCaseRegistry()
# Register canonical DN case
canonical = registry.register_dn("CN=Admin,DC=Example,DC=Com")
# Returns: "cn=admin,dc=example,dc=com"
# Get canonical case for any variant
canonical = registry.get_canonical_dn("cn=ADMIN,dc=example,dc=com")
# Returns: "cn=admin,dc=example,dc=com"
# Validate OUD consistency
result = registry.validate_oud_consistency()Design Philosophy:
- RFC parsers provide the baseline for all LDAP servers
- Universal matrix enables any-to-any server conversion with minimal implementations
- DN case registry ensures OUD compatibility during conversions
- Quirks extend and enhance RFC parsing for server-specific features
- Works with any LDAP server - known or unknown
Full compliance with RFC 2849 LDIF specification:
- Base64 Encoding - Automatic handling of
::syntax for binary data - Change Records - Support for
add,modify,delete, andmodrdnoperations - Line Continuations - Proper handling of line folding and continuation
- Comments - Support for
#comment lines - URL References - Handling of
<url>references for external data - Attribute Options - Support for language tags and other attribute options
- Version Control - LDIF version header support
Full compliance with RFC 4512 LDAP schema specification:
- AttributeType Parsing - OID, NAME, SYNTAX, EQUALITY, ORDERING, SUBSTR
- ObjectClass Parsing - OID, NAME, SUP, STRUCTURAL/AUXILIARY/ABSTRACT, MUST, MAY
- Schema Subentry - cn=subschemasubentry discovery
- Standard LDAP Syntaxes - RFC 4517 syntax support
Automatic detection and quirk-based adaptation for LDAP servers:
Fully Implemented (Production-validated):
- OpenLDAP 1.x/2.x (757 LOC) - Custom OID extensions, operational attributes, production-validated
- Oracle Internet Directory (OID) (1479 LOC) - Oracle-specific schema extensions, production-validated
- Oracle Unified Directory (OUD) (1466 LOC) - OUD quirks with nested ACL/Entry quirks, production-validated
Fully Implemented (Not yet validated with production data):
- Active Directory (777 LOC) - Complete implementation with MS OID namespace, nTSecurityDescriptor ACL parsing, DN normalization
- Apache Directory Server (648 LOC) - Complete implementation with ApacheDS OID namespace (1.3.6.1.4.1.18060), ACI format, ads-* attributes
- 389 Directory Server (699 LOC) - Complete implementation with Red Hat OID namespace (2.16.840.1.113730), nsslapd-* attributes, ACI format
- Novell eDirectory (680 LOC) - Complete implementation with Novell OID namespace (2.16.840.1.113719), nspm/login attributes, ACL parsing
- IBM Tivoli Directory Server (666 LOC) - Complete implementation with IBM OID namespace (1.3.18), ibm-/ids-* attributes, access control
Status Notes:
- All implementations include: Schema parsing (attributes + objectClasses), ACL quirks, Entry processing, RFC conversions, Write methods
- "Not yet validated" implementations need real server LDIF exports for integration testing
- All implementations have comprehensive unit tests and follow the same architectural patterns
- Ready for production use but require validation with actual server data before enterprise deployment
Quirks Architecture:
- Each server has a Schema for attributeType/objectClass extensions
- Schema quirks contain nested Acl and Entry classes
- Quirks use priority-based resolution (lower number = higher priority)
- Strict RFC 4514 compliance enforced (NO fallback behavior)
- Automatic Detection - Detects UTF-8, Latin-1, ASCII, and other encodings
- Encoding Conversion - Seamless handling of mixed encoding content
- Unicode Support - Full Unicode character support in DNs and attributes
- RFC Compliance Validation - Comprehensive compliance checking
- Server-Specific Validation - Validation against server-specific rules
- Quality Assessment - Quality metrics and recommendations
- Error Recovery - Graceful handling of malformed LDIF with detailed error reporting
| Pattern | Status | Description |
|---|---|---|
| FlextResult[T] | π’ Complete | Operations return FlextResult for error handling |
| FlextService | π’ Complete | Service-oriented architecture with LDIF services |
| FlextContainer | π’ Complete | Dependency injection for service orchestration |
| Domain Patterns | π’ Complete | LDIF Entry, DN, and Attribute domain models |
Integration: Uses flext-core patterns with memory-bound processing
graph TB
API --> Models[FlextLdifModels]
API --> Config[FlextLdifConfig]
Client --> Parser[RFC Parser]
Client --> Writer[RFC Writer]
Client --> Migration[FlextLdif.migrate()]
Client --> Processors[LdifBatchProcessor/LdifParallelProcessor]
Client --> Events[LdifMigratedEvent/LdifParsedEvent/etc.]
Migration --> Quirks[Quirks System]
Categorized --> Quirks
Parser --> Quirks
Writer --> Quirks
Quirks --> ConversionMatrix[QuirksConversionMatrix]
Quirks --> DnCaseRegistry[DnCaseRegistry]
Quirks --> Registry[FlextLdifServer]
Models --> Entry[Entry Domain Model]
Models --> DN[Distinguished Name]
Models --> ChangeRecord[Change Record Model]
cd flext-ldif
make setup
# Verify installation
python -c "from flext_ldif import FlextLdif; print('FLEXT-LDIF ready')"from flext_ldif import FlextLdif
from pathlib import Path
# Initialize FlextLdif facade (library-only interface)
ldif = FlextLdif()
# β οΈ MEMORY CHECK: Verify file size before processing
ldif_file = Path("directory.ldif")
file_size_mb = ldif_file.stat().st_size / (1024 * 1024)
if file_size_mb > 100:
print(f"WARNING: File size ({file_size_mb:.1f}MB) exceeds recommended 100MB limit")
print("Processing may fail due to memory-bound architecture - see Known Limitations")
# Parse LDIF file or content string
result = ldif.parse(ldif_file) # Accepts Path, str (file path), or content string
if result.is_success:
entries = result.unwrap()
print(f"Parsed {len(entries)} LDIF entries")
# Validate entries
validation_result = ldif.validate_entries(entries)
if validation_result.is_success:
print("LDIF validation successful")
else:
print(f"Validation error: {validation_result.error}")
else:
print(f"Parse error: {result.error}")from flext_ldif.services.rfc_schema_parser import FlextLdifRfcSchemaParser
from flext_ldif.services.server import QuirkRegistryService
from pathlib import Path
# β οΈ MANDATORY: quirk_registry is REQUIRED for all RFC parsers/writers
# QuirkRegistryService auto-discovers and registers all standard quirks
quirk_registry = QuirkRegistryService()
# Parse OID schema with quirks support
oid_parser = RfcSchemaParserService(
params={
"file_path": "oid_schema.ldif",
"parse_attributes": True,
"parse_objectclasses": True,
},
quirk_registry=quirk_registry, # MANDATORY parameter
server_type="oid", # Use Oracle Internet Directory quirks
)
result = oid_parser.execute()
if result.is_success:
schema_data = result.unwrap()
print(f"Parsed {schema_data['stats']['total_attributes']} attributes")
print(f"Parsed {schema_data['stats']['total_objectclasses']} objectClasses")
# Schema parsing automatically uses OID quirks for extensions
# Falls back to RFC 4512 for standard attributes
# Parse with RFC-only mode (quirks available but not used for this server)
rfc_parser = RfcSchemaParserService(
params={"file_path": "standard_schema.ldif"},
quirk_registry=quirk_registry, # Still MANDATORY
server_type="rfc", # Pure RFC mode - no server-specific quirks applied
)from flext_ldif import FlextLdif
from pathlib import Path
# Initialize FlextLdif API
ldif = FlextLdif()
# Define categorization rules (enables categorized mode automatically)
categorization_rules = {
"hierarchy_objectclasses": ["organization", "organizationalUnit", "domain"],
"user_objectclasses": ["inetOrgPerson", "person", "organizationalPerson"],
"group_objectclasses": ["groupOfNames", "groupOfUniqueNames"],
"acl_attributes": ["aci"], # Empty list disables ACL processing
}
# Execute unified migration (automatically detects categorized mode)
result = ldif.migrate(
input_dir=Path("source_ldifs"),
output_dir=Path("categorized_output"),
from_server="oracle_oid",
to_server="oracle_oud",
categorization_rules=categorization_rules
)
if result.is_success:
stats = result.unwrap().statistics
print("Categorized migration completed successfully")
print(f"Total entries processed: {stats.processed_entries}")
print(f"Categories created: {len(result.unwrap().entries_by_category)}")
# Generates 6 structured LDIF files:
# 00-schema.ldif, 01-hierarchy.ldif, 02-users.ldif,
# 03-groups.ldif, 04-acl.ldif, 05-rejected.ldiffrom flext_ldif.processors import LdifBatchProcessor, LdifParallelProcessor
from flext_ldif import FlextLdif
# Initialize processors
batch_processor = LdifBatchProcessor(batch_size=100)
parallel_processor = LdifParallelProcessor(max_workers=4) # Uses ThreadPoolExecutor
# Parse large LDIF file
ldif = FlextLdif()
result = ldif.parse("large_directory.ldif")
if result.is_success:
entries = result.unwrap()
# Batch processing for memory efficiency
def validate_entry(entry):
# Validate entry logic here
return entry.dn.value if hasattr(entry, 'dn') else "invalid"
batch_result = batch_processor.process_batch(entries, validate_entry)
if batch_result.is_success:
validated_dns = batch_result.unwrap()
print(f"Validated {len(validated_dns)} entries in batches")
# Parallel processing for CPU-intensive operations (TRUE PARALLELISM)
def transform_entry(entry):
# CPU-intensive transformation logic
return entry # transformed entry
parallel_result = parallel_processor.process_parallel(entries, transform_entry)
if parallel_result.is_success:
transformed_entries = parallel_result.unwrap()
print(f"Transformed {len(transformed_entries)} entries in parallel")
# Note: Results may be in different order due to parallel executionfrom flext_ldif import FlextLdifProcessor
import base64
# LDIF with RFC 2849 features
ldif_content = """
version: 1
dn: cn=test,dc=example,dc=com
cn: test
description:: VGVzdCBkZXNjcmlwdGlvbg==
objectClass: person
"""
processor = FlextLdifProcessor()
# Parse with advanced RFC 2849 compliance
result = processor.parse_string_advanced(ldif_content)
if result.is_success:
entries = result.value
print(f"Advanced parsing: {len(entries)} entries/records")
# Validate RFC compliance
compliance = processor.validate_rfc_compliance(entries)
if compliance.is_success:
print(f"Compliance score: {compliance.value['compliance_score']:.2f}")from flext_ldif import FlextLdifProcessor
processor = FlextLdifProcessor()
# Parse entries
result = processor.parse_string(ldif_content)
if result.is_success:
entries = result.value
# Detect server type
server_result = processor.detect_server_type(entries)
if server_result.is_success:
server_type = server_result.value
print(f"Detected server: {server_type}")
# Adapt entries for specific server
adapted_result = processor.adapt_entries_for_server(entries, "active_directory")
if adapted_result.is_success:
adapted_entries = adapted_result.value
print(f"Adapted {len(adapted_entries)} entries for Active Directory")from flext_ldif import FlextLdifProcessor
# LDIF with change records
change_ldif = """
dn: cn=new user,dc=example,dc=com
changetype: add
cn: new user
objectClass: person
dn: cn=existing user,dc=example,dc=com
changetype: modify
cn: existing user
objectClass: person
"""
processor = FlextLdifProcessor()
result = processor.parse_string_advanced(change_ldif)
if result.is_success:
for item in result.value:
if hasattr(item, 'changetype'):
print(f"Change Record: {item.changetype} - {item.dn.value}")
else:
print(f"Entry: {item.dn.value}")from pathlib import Path
from flext_ldif import FlextLdifProcessor
processor = FlextLdifProcessor()
# Process file with automatic encoding detection
file_path = Path("data.ldif")
result = processor.parse_file_advanced(file_path)
if result.is_success:
entries = result.value
print(f"Processed file: {len(entries)} entries")
else:
print(f"Processing failed: {result.error}")make setup # Development environment setup
make lint # Ruff linting
make type-check # MyPy type checking
make test # Run test suite
make validate # Validation pipeline- Type Safety: MyPy strict mode compliance for
src/ - Code Quality: Ruff linting and formatting
- Testing: Unit and integration tests
- LDIF Compliance: Basic RFC 2849 support
tests/
βββ unit/ # Service component tests
βββ integration/ # End-to-end LDIF processing
βββ fixtures/ldif/ # Test LDIF data samples
βββ conftest.py # Shared test configurationpytest # Full test suite
pytest -m unit # Unit tests only
pytest -m integration # Integration tests only
pytest --cov=src/flext_ldif # Coverage report- Universal Conversion Matrix: NΓN server conversions via RFC intermediate format
- DN Case Registry: Canonical DN case tracking for OUD compatibility
- Categorized Pipeline: Rule-based entry categorization with 6-file structured output
- Batch & Parallel Processors: True parallel processing with ThreadPoolExecutor for CPU-intensive operations
- Event System: Domain events for processing lifecycle tracking
- Enhanced Filters: Advanced entry filtering and transformation utilities
- LDIF Processing: Full RFC 2849/4512 compliant parsing and validation
- ACL Evaluation: Composite ACL rule evaluation with permission checking
- Service Architecture: Modular services with FlextResult error handling
- Type Safety: 100% Pyrefly strict mode compliance
- Memory-bound Processing: Loads entire files into memory for processing
- Testing: 1415/1415 tests passing (100% pass rate, 77.93% coverage)
- Memory Usage: Loads entire LDIF files into memory during processing via
content.splitlines()informat_handlers.py:206 - File Size Limit: Files larger than available RAM will cause failures - recommended maximum 100MB
- Memory Scaling: Memory usage scales linearly with file size - no streaming or chunked processing
- No Graceful Degradation: No memory pressure detection or recovery mechanisms
- Performance: Single-threaded processing, memory-bound architecture unsuitable for large datasets
- Architecture: Custom parser implementation
- Features: Basic functionality focused on small to medium file processing
Technical Details: The current implementation uses a custom _ParserHelper class that calls content.splitlines(), loading the entire file content into memory before processing begins. This design choice makes the library suitable only for files that fit comfortably in available system memory.
- Primary User: algar-oud-mig (Oracle migration project)
- Foundation: flext-core (base patterns and utilities)
- Context: LDAP directory processing within FLEXT ecosystem
Production-ready LDIF processing with comprehensive enterprise features including categorized migration pipelines, batch/parallel processing, and event-driven architecture. Suitable for production use with memory constraints for files under 100MB.
- Memory Optimization: Investigate streaming approaches for large files
- Performance: Evaluate processing bottlenecks and optimization opportunities
- Features: Additional LDIF operations based on user requirements
- Testing: Expand test coverage for edge cases
See TODO.md for detailed development priorities.
- Architecture Standards - LDIF operations responsibility, import rules, compliance verification
- Getting Started - Installation and setup
- Architecture - Service design and patterns
- API Reference - Complete API documentation
- Configuration - Settings and environment management
- Development - Contributing and workflows
- Integration - FLEXT ecosystem integration patterns
- Examples - Working code examples
- Troubleshooting - Common issues and solutions
- Operations return FlextResult[T] for error handling
- Services use FlextContainer for dependency injection
- Type annotations with Python 3.13+ syntax
- Pydantic v2 models for data validation
- Integration with flext-core patterns
- Code Quality: MyPy strict mode compliance
- Test Coverage: Unit and integration tests
- Documentation: Public APIs documented
- Architecture: Service-oriented design patterns
MIT License - see LICENSE for details.
- Documentation: docs/
- Issues: GitHub Issues
- Security: Report security issues privately to maintainers
FLEXT-LDIF v0.9.0 - Enterprise-grade LDIF processing library for LDAP data operations within the FLEXT ecosystem.
Purpose: Provide type-safe, RFC-compliant LDIF processing with advanced migration pipelines, batch processing, and comprehensive server-specific adaptations for enterprise directory operations.