Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions src/chapters/6/sections/means_medians_modes_moments/index.tex
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,9 @@ \subsection{problem 1}
\input{problems/1}
\subsection{problem 2}
\input{problems/2}




\subsection{problem 11}
\input{problems/11}
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
(a). Since, \[Z_j = \frac{X_j-\mu}{\sigma} \Longrightarrow X_j = \sigma Z_j +\mu\]
so,
\begin{equation} \label{gamma_as_e(z3)}
\begin{split}
\text{Skew}(X_j) &= \text{E} [(\frac{X_j - \mu}{\sigma})^3] \\
&= \text{E} [(\frac{\sigma Z_j + \mu - \mu}{\sigma})^3] \\
&= \text{E} [(\frac{\sigma Z_j }{\sigma})^3] \\
&= \text{E} (Z_j^3).
\end{split}
\end{equation}
Since \(\text{E} (Z_j) = 0\), \(\text{Var}(Z_j) = 1\), \[\text{Skew} (Z_j) = \text{E} [(\frac{Z_j - \text{E} (Z_j)}{\sqrt{\text{Var}(Z_j)}})^3] = \text{E} (Z_j^3) = \text{Skew}(X_j).\]
Now, \(\bar{X}_n = \frac{1}{n} \sum_{j=1}^{n}X_j\), therefore by linearity of expectation,
\begin{flalign*}
\text{E} (\bar{X}_n) &= \text{E} (\frac{1}{n} \sum_{j=1}^{n}X_j) \\
&= \frac{1}{n} \text{E} (\sum_{j=1}^{n}X_j) \\
&= \frac{1}{n} \cdot n \mu \\
&= \mu
\end{flalign*}
and,
\begin{flalign*}
\text{Var} (\bar{X}_n) &= \text{Var}(\frac{1}{n} \sum_{j=1}^{n}X_j) \\
&= \frac{1}{n^2} \text{Var} (\sum_{j=1}^{n}X_j).
\end{flalign*}
Since each \(X_j\) is mutually independent,
\begin{flalign*}
\text{Var}(\bar{X}_n) &= \frac{1}{n^2} \cdot n\sigma^2\\
&= \frac{\sigma^2}{n}
\end{flalign*}
thus,
\begin{flalign*}
\text{Skew}(\bar{X}_n) &= \text{E} [(\frac{\bar{X}_n - \text{E} (\bar{X}_n)}{\sqrt{\text{Var}(\bar{X}_n)}})^3] \\
&= \text{E} [(\frac{\bar{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}})^3] \\
&= \text{E} [(\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma})^3]
\end{flalign*}
Consider \(\bar{Z}_n\),
\begin{flalign*}
\bar{Z}_n &= \frac{1}{n} \sum_{j=1}^{n}Z_j \\
&= \frac{1}{n} \sum_{j=1}^{n}\frac{X_j-\mu}{\sigma}\\
&= \frac{(\sum_{j=1}^{n}X_j)-n\mu}{n \sigma} \\
&= \frac{(n \cdot \frac{\sum_{j=1}^{n}X_j}{n})-n\mu}{n \sigma} \\
&= \frac{n\bar{X}_n-n\mu}{n \sigma} \\
&= \frac{\bar{X}_n-\mu}{\sigma}
\end{flalign*}
so, by linearity of expectation, \begin{equation} \label{expectation_z_bar}
\text{E} (\bar{Z}_n) = \frac{1}{n}\sum_{j=1}^{n}\text{E} (Z_j) = 0,
\end{equation}and,
\begin{flalign*}
\text{Var} (\bar{Z}_n) &= \text{Var}(\frac{1}{n} \sum_{j=1}^{n}Z_j) \\
&= \frac{1}{n^2} \text{Var} (\sum_{j=1}^{n}Z_j)
\end{flalign*}
Since each \(Z_j\) is mutually independent and \(\text{Var}(Z_j) = 1\) for all j,
\begin{flalign*}
\text{Var}(\bar{Z}_n) &= \frac{1}{n^2} \cdot n \cdot 1^2\\
&= \frac{1}{n}
\end{flalign*}
finally,
\begin{flalign*}
\text{Skew}(\bar{Z}_n) &= \text{E} [(\frac{\bar{Z}_n - \text{E} (\bar{Z}_n)}{\sqrt{\text{Var}(\bar{Z}_n)}})^3] \\
&= \text{E} [(\frac{\frac{\bar{X}_n-\mu}{\sigma} - 0}{\sqrt{\frac{1}{n}}})^3] \\
&= \text{E} [(\frac{\frac{\bar{X}_n-\mu}{\sigma}}{\frac{1}{\sqrt{n}}})^3] \\
&= \text{E} [(\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma})^3] \\
&= \text{Skew}(\bar{X}_n).
\end{flalign*}
And so \(\bar{Z}_n\) has the same skewness as \(\bar{X}_n\). \\

(b). From (a),
\begin{flalign*}
\text{Skew}(\bar{X}_n) &= \text{Skew}(\bar{Z}_n)\\
&= \text{E} [(\frac{\bar{Z}_n - \text{E} (\bar{Z}_n)}{\sqrt{\text{Var}(\bar{Z}_n)}})^3] \\
&= \frac{1}{(\text{Var}(\bar{Z}_n))^\frac{3}{2}} \cdot \text{E} [(\bar{Z}_n - \text{E} (\bar{Z}_n))^3] \\
&= \frac{1}{(\text{Var}(\bar{Z}_n))^\frac{3}{2}} \cdot \text{E} ((\bar{Z}_n)^3)
\end{flalign*}
as \(\text{E}(\bar{Z}_n) = 0\) (by (\ref{expectation_z_bar})). \hfill \\
Since \(\text{E} ((\bar{Z}_n)^3) = \text{E}[(\frac{1}{n}\sum_{j=1}^{n}\text{E} (Z_j))^3] = \frac{1}{n^3}\text{E}[(\sum_{j=1}^{n}\text{E} (Z_j))^3]\) (again by \ref{expectation_z_bar}),
\[
\text{Skew}(\bar{X}_n) = \frac{1}{n^3(\text{Var}(\bar{Z}_n))^\frac{3}{2}} \cdot (\sum_{j=1}^{n}\text{E} (Z_j))^3
\]
We now focus on \((\sum_{j=1}^{n}\text{E} (Z_j))^3\).
\[
(\sum_{j=1}^{n} \text{E} (Z_j))^3= \sum_{i=1}^n \text{E}(Z_i)^3 + 3 \sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \ne i}}^{n} \text{E}(Z_i)^2 \text{E}(Z_j) + 6 \sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \ne i}}^{n} \sum_{\substack{k=1 \\ k \ne j, k \ne i}}^{n} \text{E}(Z_i) \text{E}(Z_j) \text{E}(Z_k)
\]
Since \(\text{E}(Z_j) = 0\) for all j,
\begin{flalign*}
(\sum_{j=1}^{n}\text{E} (Z_j))^3 &= \sum_{i=1}^n\text{E}(Z_i)^3 + 3\sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \ne i}}^{n} \text{E}(Z_i)^2 \cdot 0 + 6\sum_{i=1}^{n}\sum_{\substack{j=1 \\ j \ne i}}^{n} \sum_{\substack{k=1 \\ k \ne j, k \ne i}}^{n} 0 \cdot 0 \cdot 0 \\
&= \sum_{i=1}^n\text{E}(Z_i)^3.
\end{flalign*}
Hence, \[\text{Skew}(\bar{X}_n) = \frac{1}{n^3(\text{Var}(\bar{Z}_n))^\frac{3}{2}} \cdot \sum_{j=1}^{n}(\text{E}(Z_j)^3).\]
As each \(Z_j\) is independent, by (\ref{gamma_as_e(z3)}), \(\text{E}(Z_j)^3 = \text{E}(Z_j^3) = \text{Skew}(X_j) =\gamma\), and since \(\text{Var}(\bar{Z}_n)) = \frac{1}{n}\),
\begin{flalign*}
\text{Skew}(\bar{X}_n) &= \frac{1}{n^3(\frac{1}{n})^\frac{3}{2}} \cdot \sum_{j=1}^{n}\gamma\\
&= \frac{1}{n^\frac{3}{2}} \cdot n\gamma \\
&= \frac{\gamma}{\sqrt{n}}.
\end{flalign*}

(c). Since \(\text{Skew}(\bar{X}_n) = \frac{\gamma}{\sqrt{n}}\), as n becomes large, skewness becomes small, hence the distribution of \(\bar{X}_n\) will be more symmetric.
Loading