-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_analysis.R
54 lines (39 loc) · 1.64 KB
/
run_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#read and unzip data
#download.file("http://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip","projectdata.zip")
unzip(zipfile="projectdata.zip", unzip="internal")
#read the training and test datasets
train <- read.table("./UCI HAR Dataset/train/X_train.txt")
test <- read.table("./UCI HAR Dataset/test/X_test.txt")
#read activity labels
trainlab <- read.table("./UCI HAR Dataset/train/y_train.txt")
testlab <- read.table("./UCI HAR Dataset/test/y_test.txt")
labels <- read.table("./UCI HAR Dataset/activity_labels.txt")
#read the variable names
names <- read.table("./UCI HAR Dataset/features.txt")
#asign variable names to data
nameslist <- names[,2]
names(train) <- nameslist
names(test) <- nameslist
#assign the activity label for each row
trainlab1 <- merge(trainlab,labels,by.y="V1")
testlab1 <- merge(testlab,labels,by.y="V1")
train$activity <- trainlab1$V2
test$activity <- testlab1$V2
#merge test and training datasets
set <- rbind(train,test)
#extract mean and standard deviation for each measurement
means <- colMeans(set[,1:560])
sdv <- apply(set[,1:560],2,sd)
#read the subjects labels
subtest <- read.table("./UCI HAR Dataset/test/subject_test.txt")
subtrain <- read.table("./UCI HAR Dataset/train/subject_train.txt")
#tidy subjects labels
sub <- rbind(subtrain,subtest)
subch <- sapply(sub,as.character)
subch1 <- sub(pattern="\n","",subch)
#asign subjects to dataset
set$subject <- factor(subch1)
#extract mean by activity and subject
meanset <- aggregate(set,list(set$activity,set$subject),mean)
ord <- meanset[order(meanset$Group.1,meanset$Group.2),]
write.table(ord,file="meansbyactivitysubject.txt",row.name=FALSE)