You may find in Postman Collection the collection of our Rest API. You may find instructions as to how to import the postman collection here. There are two endpoints exposed: Finetune and Predict The code to be used for training or to highlight must be given base64encoded.
We heave also created a Github Wiki with important documents such as the documentation of testing and project organisation. You can find it here: https://github.com/fayepsr/ase/wiki The wiki also contains:
- Project Organisation: https://github.com/fayepsr/ase/wiki/Project-Organization
- Testing: https://github.com/fayepsr/ase/wiki/Testing
- Microservice Overview: https://github.com/fayepsr/ase/wiki/Microservice-Overview
This comment would not exist in a real application. The secret to use is: hsdiwu8&%$$
curl --location --request POST 'http://localhost:8089/api/v1/finetune'
--form 'lang="python"'
--form 'code="cHJpbnQoIjEyMyIp"'
--form 'secret="XXXXXXXX"'
cHJpbnQoIjEyMyIp is the python code base64encoded
curl --location --request POST 'http://localhost:8089/api/v1/highlight'
--form 'lang="python"'
--form 'code="cHJpbnQoIjEyMyIp"'
--form 'secret="XXXXXXXX"'
--form 'mode="json"'
- cHJpbnQoIjEyMyIp is the python code base64encoded
- mode: "json" or "html"
The html mode will return a full HTML document with agiven HTML class for each type of token.
The json mode will return a json array as shown in the example below. Each element of the array is a token.
- startIndex, endIndex: refer to the position of the token in the code
- token: is the token itself
- type: ["GENERAL", "KEYWORD", "LITERAL", "CHAR_STRING_LITERAL", "COMMENT", "CLASS_DECLARATOR", "FUNCTION_DECLARATOR", "VARIABLE_DECLARATOR", "TYPE_IDENTIFIER", "FUNCTION_IDENTIFIER", "FIELD_IDENTIFIER", "ANNOTATION_DECLARATOR", "UNKONOWN"]
- Example
[ { "startIndex": 0, "endIndex": 5, "type": "KEYWORD", "token": "import" }, { "startIndex": 7, "endIndex": 10, "type": "GENERAL", "token": "java" }, .... ]
To compose the containers navigate inside src and run .\build_and_run_all.bat (for Windows Environments).
If not in a Windows Environment, you may run the following commands:
cd src
docker-compose down
docker image rm src_php:latest
docker image rm src_learner:latest
docker image rm src_react:latest
cd ./src_react
docker build -f ./dockerfile -t src_react:latest .
cd ../src_php
docker build -f ./dockerfile -t src_php:latest .
cd ../src_learner
docker build -f ./dockerfile -t src_learner:latest .
cd ../
docker-compose up
You can start the demo by navigating with the command line to the "src" folder in this repo and then type "docker-compose up". The yaml file is called "docker-compose.yml".
Our private domain for highlighting logic learner: http://learner:9007 Our public domain: http://localhost:8089/api/v1 Our demo frontend: http://localhost:3007
Our public domain: https://ase-service-1.iugkfeabdb168.eu-central-1.cs.amazonlightsail.com/
Our demo frontend: https://container-service-2.iugkfeabdb168.eu-central-1.cs.amazonlightsail.com/
We have scheduled an event using AWS eventbridge and the finetune function is called every 30 minutes.