Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 120 additions & 0 deletions Graph Theory/A Star/AStar.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
class Node():
"""A node class for A* Pathfinding"""

def __init__(self, parent=None, position=None):
self.parent = parent
self.position = position

self.g = 0
self.h = 0
self.f = 0

def __eq__(self, other):
return self.position == other.position


def astar(maze, start, end):
"""Returns a list of tuples as a path from the given start to the given end in the given maze"""

# Create start and end node
start_node = Node(None, start)
start_node.g = start_node.h = start_node.f = 0
end_node = Node(None, end)
end_node.g = end_node.h = end_node.f = 0

# Initialize both open and closed list
open_list = []
closed_list = []

# Add the start node
open_list.append(start_node)

# Loop until you find the end
while len(open_list) > 0:

# Get the current node
current_node = open_list[0]
current_index = 0
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index

# Pop current off open list, add to closed list
open_list.pop(current_index)
closed_list.append(current_node)

# Found the goal
if current_node == end_node:
path = []
current = current_node
while current is not None:
path.append(current.position)
current = current.parent
return path[::-1] # Return reversed path

# Generate children
children = []
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares

# Get node position
node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])

# Make sure within range
if node_position[0] > (len(maze) - 1) or node_position[0] < 0 or node_position[1] > (len(maze[len(maze)-1]) -1) or node_position[1] < 0:
continue

# Make sure walkable terrain
if maze[node_position[0]][node_position[1]] != 0:
continue

# Create new node
new_node = Node(current_node, node_position)

# Append
children.append(new_node)

# Loop through children
for child in children:

# Child is on the closed list
for closed_child in closed_list:
if child == closed_child:
continue

# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)
child.f = child.g + child.h

# Child is already in the open list
for open_node in open_list:
if child == open_node and child.g > open_node.g:
continue

# Add the child to the open list
open_list.append(child)


def main():

maze = [[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

start = (0, 0)
end = (7, 6)

path = astar(maze, start, end)
print(path)


if __name__ == '__main__':
main()