-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
20ffb04
commit eb9a811
Showing
3 changed files
with
206 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
import argparse | ||
import json | ||
import logging | ||
import os | ||
|
||
import timm | ||
import timm.data | ||
import torch | ||
import torch.utils.data | ||
from tqdm import tqdm | ||
|
||
import detectors | ||
from detectors.config import RESULTS_DIR | ||
|
||
_logger = logging.getLogger(__name__) | ||
|
||
|
||
def topk_accuracy(preds, labels, k=5): | ||
topk = torch.topk(preds, k=k, dim=1) | ||
topk_preds = topk.indices | ||
topk_labels = labels.unsqueeze(1).expand_as(topk_preds) | ||
return (topk_preds == topk_labels).any(dim=1).float().mean().item() | ||
|
||
|
||
def main(args): | ||
torch.manual_seed(42) | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
if device == "cpu": | ||
# try mps | ||
device = "mps" | ||
# create model | ||
model = timm.create_model(args.model, pretrained=True) | ||
model.to(device) | ||
print(model.default_cfg) | ||
data_config = timm.data.resolve_data_config(model.default_cfg) | ||
test_transform = timm.data.create_transform(**data_config) | ||
data_config["is_training"] = True | ||
train_transform = timm.data.create_transform(**data_config, color_jitter=None) | ||
|
||
_logger.info("Test transform: %s", test_transform) | ||
_logger.info("Train transform: %s", train_transform) | ||
|
||
dataset = detectors.create_dataset(args.dataset, split=args.split, transform=test_transform, download=True) | ||
|
||
dataloader = torch.utils.data.DataLoader( | ||
dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True | ||
) | ||
model.eval() | ||
x = torch.randn(1, 3, 224, 224) | ||
x = x.to(device) | ||
with torch.no_grad(): | ||
y = model(x) | ||
|
||
num_classes = y.shape[1] | ||
if args.dataset == "imagenet_r": | ||
mask = dataset.imagenet_r_mask | ||
else: | ||
mask = range(num_classes) | ||
|
||
all_preds = torch.empty((len(dataset), num_classes), dtype=torch.float32) | ||
all_labels = torch.empty(len(dataset), dtype=torch.long) | ||
_logger.info(f"Shapes: {all_preds.shape}, {all_labels.shape}") | ||
for i, batch in enumerate(tqdm(dataloader, total=len(dataloader))): | ||
inputs, labels = batch | ||
inputs = inputs.to(device) | ||
# print(labels) | ||
with torch.no_grad(): | ||
outputs = model(inputs) | ||
# print(outputs) | ||
outputs = torch.softmax(outputs, dim=1) | ||
all_preds[i * args.batch_size : (i + 1) * args.batch_size] = outputs.cpu() | ||
all_labels[i * args.batch_size : (i + 1) * args.batch_size] = labels.cpu() | ||
if args.debug: | ||
_logger.info("Labels: %s", labels) | ||
_logger.info("Predictions: %s", outputs.argmax(1)) | ||
break | ||
|
||
top1 = topk_accuracy(all_preds[:, mask], all_labels, k=1) * 100 | ||
top5 = topk_accuracy(all_preds[:, mask], all_labels, k=5) * 100 | ||
_logger.info(torch.sum(torch.argmax(all_preds, dim=1) == all_labels) / len(all_labels)) | ||
_logger.info(f"Top-1 accuracy: {top1:.4f}") | ||
_logger.info(f"Top-5 accuracy: {top5:.4f}") | ||
|
||
if not args.debug: | ||
# save results to file | ||
results = { | ||
"model": args.model, | ||
"dataset": args.dataset, | ||
"split": args.split, | ||
"top1_acc": top1, | ||
"top5_acc": top5, | ||
} | ||
filename = os.path.join(RESULTS_DIR, "accuracy", "results.csv") | ||
detectors.utils.append_results_to_csv_file(results, filename) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--model", type=str, default="resnet50.tv_in1k") | ||
parser.add_argument("--dataset", type=str, default="imagenet1k") | ||
parser.add_argument("--split", type=str, default="val") | ||
parser.add_argument("--batch_size", type=int, default=64) | ||
parser.add_argument("--num_workers", type=int, default=3) | ||
parser.add_argument("--debug", action="store_true") | ||
args = parser.parse_args() | ||
|
||
logging.basicConfig(level=logging.INFO) | ||
_logger.info(json.dumps(args.__dict__, indent=2)) | ||
|
||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import argparse | ||
import json | ||
import logging | ||
import time | ||
|
||
import accelerate | ||
import numpy as np | ||
import timm | ||
import torch | ||
import torch.utils.data | ||
from sklearn.neighbors import KNeighborsClassifier | ||
from timm.data import resolve_data_config | ||
from timm.data.transforms_factory import create_transform | ||
from tqdm import tqdm | ||
|
||
import detectors | ||
|
||
_logger = logging.getLogger(__name__) | ||
|
||
|
||
@torch.no_grad() | ||
def main(args): | ||
if "supcon" in args.model or "simclr" in args.model: | ||
args.ssl = True | ||
accelerator = accelerate.Accelerator() | ||
|
||
model = timm.create_model(args.model, pretrained=True) | ||
data_config = resolve_data_config(model.default_cfg) | ||
transform = create_transform(**data_config) | ||
_logger.info(transform) | ||
|
||
model.eval() | ||
model = accelerator.prepare(model) | ||
|
||
dataset = detectors.create_dataset(args.dataset, split=args.split, transform=transform) | ||
dataloader = torch.utils.data.DataLoader( | ||
dataset, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=accelerator.num_processes | ||
) | ||
dataloader = accelerator.prepare(dataloader) | ||
|
||
inference_time = [] | ||
all_outputs = [] | ||
all_labels = [] | ||
start_time = time.time() | ||
progress_bar = tqdm(dataloader, desc="Inference", disable=not accelerator.is_local_main_process) | ||
for x, labels in dataloader: | ||
t1 = time.time() | ||
outputs = model(x) | ||
t2 = time.time() | ||
|
||
outputs, labels = accelerator.gather_for_metrics((outputs, labels)) | ||
all_outputs.append(outputs.cpu()) | ||
all_labels.append(labels.cpu()) | ||
inference_time.append(t2 - t1) | ||
progress_bar.update() | ||
|
||
progress_bar.close() | ||
accelerator.wait_for_everyone() | ||
|
||
all_outputs = torch.cat(all_outputs, dim=0) | ||
all_labels = torch.cat(all_labels, dim=0) | ||
|
||
if not args.ssl: | ||
_, preds = torch.max(all_outputs, 1) | ||
else: | ||
features = all_outputs.cpu().numpy() | ||
all_labels = all_labels.cpu().numpy() | ||
estimator = KNeighborsClassifier(20, metric="cosine").fit(features, all_labels) | ||
preds = estimator.predict(features) | ||
preds = torch.from_numpy(preds) | ||
all_labels = torch.from_numpy(all_labels) | ||
|
||
acc = torch.mean((preds.cpu() == all_labels.cpu()).float()).item() | ||
|
||
print(f"Total time: {time.time() - start_time:.2f} seconds") | ||
print(f"Accuracy: {acc}") | ||
print(f"Average inference time: {np.mean(inference_time)}") | ||
|
||
|
||
if __name__ == "__main__": | ||
logging.basicConfig(level=logging.INFO) | ||
|
||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument("--model", type=str, default="densenet121") | ||
parser.add_argument("--dataset", type=str, default="imagenet1k") | ||
parser.add_argument("--split", type=str, default="val") | ||
parser.add_argument("--batch_size", type=int, default=128) | ||
parser.add_argument("--ssl", action="store_true") | ||
|
||
args = parser.parse_args() | ||
|
||
_logger.info(json.dumps(args.__dict__, indent=2)) | ||
|
||
main(args) |