Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update dependency numpy to v1.25.2 #26

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open

Conversation

renovate[bot]
Copy link

@renovate renovate bot commented Jul 3, 2023

Mend Renovate

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (source) ==1.24.3 -> ==1.25.2 age adoption passing confidence

Release Notes

numpy/numpy (numpy)

v1.25.2

Compare Source

NumPy 1.25.2 Release Notes

NumPy 1.25.2 is a maintenance release that fixes bugs and regressions
discovered after the 1.25.1 release. This is the last planned release in
the 1.25.x series, the next release will be 1.26.0, which will use the
meson build system and support Python 3.12. The Python versions
supported by this release are 3.9-3.11.

Contributors

A total of 13 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Aaron Meurer
  • Andrew Nelson
  • Charles Harris
  • Kevin Sheppard
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Ralf Gommers
  • Randy Eckenrode +
  • Sam James +
  • Sebastian Berg
  • Tyler Reddy
  • dependabot[bot]
Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​24148: MAINT: prepare 1.25.x for further development
  • #​24174: ENH: Improve clang-cl compliance
  • #​24179: MAINT: Upgrade various build dependencies.
  • #​24182: BLD: use -ftrapping-math with Clang on macOS
  • #​24183: BUG: properly handle negative indexes in ufunc_at fast path
  • #​24184: BUG: PyObject_IsTrue and PyObject_Not error handling in setflags
  • #​24185: BUG: histogram small range robust
  • #​24186: MAINT: Update meson.build files from main branch
  • #​24234: MAINT: exclude min, max and round from np.__all__
  • #​24241: MAINT: Dependabot updates
  • #​24242: BUG: Fix the signature for np.array_api.take
  • #​24243: BLD: update OpenBLAS to an intermeidate commit
  • #​24244: BUG: Fix reference count leak in str(scalar).
  • #​24245: BUG: fix invalid function pointer conversion error
  • #​24255: BUG: Factor out slow getenv call used for memory policy warning
  • #​24292: CI: correct URL in cirrus.star
  • #​24293: BUG: Fix C types in scalartypes
  • #​24294: BUG: do not modify the input to ufunc_at
  • #​24295: BUG: Further fixes to indexing loop and added tests
Checksums
MD5
33518ccb4da8ee11f1dee4b9fef1e468  numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
b5cb0c3b33ef6d93ec2888f25b065636  numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
ae027dd38bd73f09c07220b2f516f148  numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88cf69dc3c0d293492c4c7e75dccf3d8  numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e4e3ad02375ba71ae2cd05ccd97aba4  numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
f52bb644682deb26c35ddec77198b65c  numpy-1.25.2-cp310-cp310-win32.whl
4944cf36652be7560a6bcd0d5d56e8ea  numpy-1.25.2-cp310-cp310-win_amd64.whl
5a56e639defebb7b871c8c5613960ca3  numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
3988b96944e7218e629255214f2598bd  numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
302d65015ddd908a862fb3761a2a0363  numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e54a2e23272d1c5e5b278bd7e304c948  numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
961d390e8ccaf11b1b0d6200d2c8b1c0  numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
e113865b90f97079d344100c41226fbe  numpy-1.25.2-cp311-cp311-win32.whl
834a147aa1adaec97655018b882232bd  numpy-1.25.2-cp311-cp311-win_amd64.whl
fb55f93a8033bde854c8a2b994045686  numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
d96e754217d29bf045e082b695667e62  numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
beab540edebecbb257e482dd9e498b44  numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d608c9e09cd8feba48567586cfefc0  numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe1fc32c8bb005ca04b8f10ebdcff6dd  numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
41df58a9935c8ed869c92307c95f02eb  numpy-1.25.2-cp39-cp39-win32.whl
a4371272c64493beb8b04ac46c4c1521  numpy-1.25.2-cp39-cp39-win_amd64.whl
bbe051cbd5f8661dd054277f0b0f0c3d  numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
3f68e6b4af6922989dc0133e37db34ee  numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fc89421b79e8800240999d3a1d06a4d2  numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
cee1996a80032d47bdf1d9d17249c34e  numpy-1.25.2.tar.gz
SHA256
db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3  numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f  numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187  numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357  numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9  numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044  numpy-1.25.2-cp310-cp310-win32.whl
834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545  numpy-1.25.2-cp310-cp310-win_amd64.whl
c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418  numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f  numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2  numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf  numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364  numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d  numpy-1.25.2-cp311-cp311-win32.whl
5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4  numpy-1.25.2-cp311-cp311-win_amd64.whl
b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3  numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926  numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca  numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295  numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f  numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01  numpy-1.25.2-cp39-cp39-win32.whl
76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380  numpy-1.25.2-cp39-cp39-win_amd64.whl
1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55  numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901  numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf  numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760  numpy-1.25.2.tar.gz

v1.25.1

Compare Source

NumPy 1.25.1 Release Notes

NumPy 1.25.1 is a maintenance release that fixes bugs and regressions
discovered after the 1.25.0 release. The Python versions supported by
this release are 3.9-3.11.

Contributors

A total of 10 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew Nelson
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • Hood Chatham
  • Nathan Goldbaum
  • Rohit Goswami
  • Sebastian Berg
  • Tim Paine +
  • dependabot[bot]
  • matoro +

Pull requests merged

A total of 14 pull requests were merged for this release.

  • #​23968: MAINT: prepare 1.25.x for further development
  • #​24036: BLD: Port long double identification to C for meson
  • #​24037: BUG: Fix reduction return NULL to be goto fail
  • #​24038: BUG: Avoid undefined behavior in array.astype()
  • #​24039: BUG: Ensure __array_ufunc__ works without any kwargs passed
  • #​24117: MAINT: Pin urllib3 to avoid anaconda-client bug.
  • #​24118: TST: Pin pydantic<2 in Pyodide workflow
  • #​24119: MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1
  • #​24120: MAINT: Bump actions/checkout from 3.5.2 to 3.5.3
  • #​24122: BUG: Multiply or Divides using SIMD without a full vector can...
  • #​24127: MAINT: testing for IS_MUSL closes #​24074
  • #​24128: BUG: Only replace dtype temporarily if dimensions changed
  • #​24129: MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0
  • #​24134: BUG: Fix private procedures in f2py modules

Checksums

MD5
d09d98643db31e892fad11b8c2b7af22  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d5b8d3b0424e2af41018f35a087c4500  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
1007893b1a8bfd97d445a63d29d33642  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6a62d7a6cee310b41dc872aa7f3d7e8b  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e81f6264aecfa2269c5d29d10c362cbc  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
ab8ecd125ca86eac0b3ada67ab66dad6  numpy-1.25.1-cp310-cp310-win32.whl
5466bebeaafcc3d6e1b98858d77ff945  numpy-1.25.1-cp310-cp310-win_amd64.whl
f31b059256ae09b7b83df63f52d8371e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
099f74d654888869704469c321af845d  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
20d04dccd2bfca5cfd88780d1dc9a3f8  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
61dfd7c00638e83a7af59b86615ee9d2  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4eb459c3d9479c4da2fdf20e4c4085d0  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
5e84e797866c68ba65fa89a4bf4ba8ce  numpy-1.25.1-cp311-cp311-win32.whl
87bb1633b2e8029dbfa1e59f7ab22625  numpy-1.25.1-cp311-cp311-win_amd64.whl
3fcf2eb5970d848a26abdff1b10228e7  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
d71e1cbe18fe05944219e5a5be1796bf  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
5b457e10834c991bca84aae7eaa49f34  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5cbb4c2f2892fafdf6f34fcb37c9e743  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7d9d1ae23cf5420652088bfe8e048d89  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
7e5bed491b85f0d7c718d6809f9b3ed2  numpy-1.25.1-cp39-cp39-win32.whl
838e97b751bebadf47e2196b2c88ffa2  numpy-1.25.1-cp39-cp39-win_amd64.whl
9ba95d8d6004d9659d7728fe93f67be9  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
fbccb20254a2dc85bdec549a03b8eb56  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
95e36689e6dd078caf11e7e2a2d5f5f1  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
768d0ebf15e2242f4c7ca7565bb5dd3e  numpy-1.25.1.tar.gz
SHA256
77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503  numpy-1.25.1-cp310-cp310-win32.whl
c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57  numpy-1.25.1-cp310-cp310-win_amd64.whl
6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb  numpy-1.25.1-cp311-cp311-win32.whl
c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171  numpy-1.25.1-cp311-cp311-win_amd64.whl
3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c  numpy-1.25.1-cp39-cp39-win32.whl
1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631  numpy-1.25.1-cp39-cp39-win_amd64.whl
35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf  numpy-1.25.1.tar.gz

v1.25.0

Compare Source

NumPy 1.25.0 Release Notes

The NumPy 1.25.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There has also been work to prepare for the
future NumPy 2.0.0 release, resulting in a large number of new and
expired deprecation. Highlights are:

  • Support for MUSL, there are now MUSL wheels.
  • Support the Fujitsu C/C++ compiler.
  • Object arrays are now supported in einsum
  • Support for inplace matrix multiplication (@=).

We will be releasing a NumPy 1.26 when Python 3.12 comes out. That is
needed because distutils has been dropped by Python 3.12 and we will be
switching to using meson for future builds. The next mainline release
will be NumPy 2.0.0. We plan that the 2.0 series will still support
downstream projects built against earlier versions of NumPy.

The Python versions supported in this release are 3.9-3.11.

Deprecations
  • np.core.MachAr is deprecated. It is private API. In names defined
    in np.core should generally be considered private.

    (gh-22638)

  • np.finfo(None) is deprecated.

    (gh-23011)

  • np.round_ is deprecated. Use np.round instead.

    (gh-23302)

  • np.product is deprecated. Use np.prod instead.

    (gh-23314)

  • np.cumproduct is deprecated. Use np.cumprod instead.

    (gh-23314)

  • np.sometrue is deprecated. Use np.any instead.

    (gh-23314)

  • np.alltrue is deprecated. Use np.all instead.

    (gh-23314)

  • Only ndim-0 arrays are treated as scalars. NumPy used to treat all
    arrays of size 1 (e.g., np.array([3.14])) as scalars. In the
    future, this will be limited to arrays of ndim 0 (e.g.,
    np.array(3.14)). The following expressions will report a
    deprecation warning:

    a = np.array([3.14])
    float(a)  # better: a[0] to get the numpy.float or a.item()
    
    b = np.array([[3.14]])
    c = numpy.random.rand(10)
    c[0] = b  # better: c[0] = b[0, 0]

    (gh-10615)

  • numpy.find_common_type is now deprecated and its use
    should be replaced with either numpy.result_type or
    numpy.promote_types. Most users leave the second
    scalar_types argument to find_common_type as [] in which case
    np.result_type and np.promote_types are both faster and more
    robust. When not using scalar_types the main difference is that
    the replacement intentionally converts non-native byte-order to
    native byte order. Further, find_common_type returns object
    dtype rather than failing promotion. This leads to differences when
    the inputs are not all numeric. Importantly, this also happens for
    e.g. timedelta/datetime for which NumPy promotion rules are
    currently sometimes surprising.

    When the scalar_types argument is not [] things are more
    complicated. In most cases, using np.result_type and passing the
    Python values 0, 0.0, or 0j has the same result as using
    int, float, or complex in scalar_types.

    When scalar_types is constructed, np.result_type is the correct
    replacement and it may be passed scalar values like
    np.float32(0.0). Passing values other than 0, may lead to
    value-inspecting behavior (which np.find_common_type never used
    and NEP 50 may change in the future). The main possible change in
    behavior in this case, is when the array types are signed integers
    and scalar types are unsigned.

    If you are unsure about how to replace a use of scalar_types or
    when non-numeric dtypes are likely, please do not hesitate to open a
    NumPy issue to ask for help.

    (gh-22539)

Expired deprecations
  • np.core.machar and np.finfo.machar have been removed.

    (gh-22638)

  • +arr will now raise an error when the dtype is not numeric (and
    positive is undefined).

    (gh-22998)

  • A sequence must now be passed into the stacking family of functions
    (stack, vstack, hstack, dstack and column_stack).

    (gh-23019)

  • np.clip now defaults to same-kind casting. Falling back to unsafe
    casting was deprecated in NumPy 1.17.

    (gh-23403)

  • np.clip will now propagate np.nan values passed as min or
    max. Previously, a scalar NaN was usually ignored. This was
    deprecated in NumPy 1.17.

    (gh-23403)

  • The np.dual submodule has been removed.

    (gh-23480)

  • NumPy now always ignores sequence behavior for an array-like
    (defining one of the array protocols). (Deprecation started NumPy
    1.20)

    (gh-23660)

  • The niche FutureWarning when casting to a subarray dtype in
    astype or the array creation functions such as asarray is now
    finalized. The behavior is now always the same as if the subarray
    dtype was wrapped into a single field (which was the workaround,
    previously). (FutureWarning since NumPy 1.20)

    (gh-23666)

  • == and != warnings have been finalized. The == and !=
    operators on arrays now always:

    • raise errors that occur during comparisons such as when the
      arrays have incompatible shapes
      (np.array([1, 2]) == np.array([1, 2, 3])).

    • return an array of all True or all False when values are
      fundamentally not comparable (e.g. have different dtypes). An
      example is np.array(["a"]) == np.array([1]).

      This mimics the Python behavior of returning False and True
      when comparing incompatible types like "a" == 1 and
      "a" != 1. For a long time these gave DeprecationWarning or
      FutureWarning.

    (gh-22707)

  • Nose support has been removed. NumPy switched to using pytest in
    2018 and nose has been unmaintained for many years. We have kept
    NumPy's nose support to avoid breaking downstream projects who
    might have been using it and not yet switched to pytest or some
    other testing framework. With the arrival of Python 3.12, unpatched
    nose will raise an error. It is time to move on.

    Decorators removed:

    • raises
    • slow
    • setastest
    • skipif
    • knownfailif
    • deprecated
    • parametrize
    • _needs_refcount

    These are not to be confused with pytest versions with similar
    names, e.g., pytest.mark.slow, pytest.mark.skipif,
    pytest.mark.parametrize.

    Functions removed:

    • Tester
    • import_nose
    • run_module_suite

    (gh-23041)

  • The numpy.testing.utils shim has been removed. Importing from the
    numpy.testing.utils shim has been deprecated since 2019, the shim
    has now been removed. All imports should be made directly from
    numpy.testing.

    (gh-23060)

  • The environment variable to disable dispatching has been removed.
    Support for the NUMPY_EXPERIMENTAL_ARRAY_FUNCTION environment
    variable has been removed. This variable disabled dispatching with
    __array_function__.

    (gh-23376)

  • Support for y= as an alias of out= has been removed. The fix,
    isposinf and isneginf functions allowed using y= as a
    (deprecated) alias for out=. This is no longer supported.

    (gh-23376)

Compatibility notes
  • The busday_count method now correctly handles cases where the
    begindates is later in time than the enddates. Previously, the
    enddates was included, even though the documentation states it is
    always excluded.

    (gh-23229)

  • When comparing datetimes and timedelta using np.equal or
    np.not_equal numpy previously allowed the comparison with
    casting="unsafe". This operation now fails. Forcing the output
    dtype using the dtype kwarg can make the operation succeed, but we
    do not recommend it.

    (gh-22707)

  • When loading data from a file handle using np.load, if the handle
    is at the end of file, as can happen when reading multiple arrays by
    calling np.load repeatedly, numpy previously raised ValueError
    if allow_pickle=False, and OSError if allow_pickle=True. Now
    it raises EOFError instead, in both cases.

    (gh-23105)

np.pad with mode=wrap pads with strict multiples of original data

Code based on earlier version of pad that uses mode="wrap" will
return different results when the padding size is larger than initial
array.

np.pad with mode=wrap now always fills the space with strict
multiples of original data even if the padding size is larger than the
initial array.

(gh-22575)

Cython long_t and ulong_t removed

long_t and ulong_t were aliases for longlong_t and ulonglong_t
and confusing (a remainder from of Python 2). This change may lead to
the errors:

'long_t' is not a type identifier
'ulong_t' is not a type identifier

We recommend use of bit-sized types such as cnp.int64_t or the use of
cnp.intp_t which is 32 bits on 32 bit systems and 64 bits on 64 bit
systems (this is most compatible with indexing). If C long is desired,
use plain long or npy_long. cnp.int_t is also long (NumPy's
default integer). However, long is 32 bit on 64 bit windows and we may
wish to adjust this even in NumPy. (Please do not hesitate to contact
NumPy developers if you are curious about this.)

(gh-22637)

Changed error message and type for bad axes argument to ufunc

The error message and type when a wrong axes value is passed to
ufunc(..., axes=[...]) has changed. The message is now more
indicative of the problem, and if the value is mismatched an
AxisError will be raised. A TypeError will still be raised for
invalidinput types.

(gh-22675)

Array-likes that define __array_ufunc__ can now override ufuncs if used as where

If the where keyword argument of a numpy.ufunc{.interpreted-text
role="class"} is a subclass of numpy.ndarray{.interpreted-text
role="class"} or is a duck type that defines
numpy.class.__array_ufunc__{.interpreted-text role="func"} it can
override the behavior of the ufunc using the same mechanism as the input
and output arguments. Note that for this to work properly, the
where.__array_ufunc__ implementation will have to unwrap the where
argument to pass it into the default implementation of the ufunc or,
for numpy.ndarray{.interpreted-text role="class"} subclasses before
using super().__array_ufunc__.

(gh-23240)

Compiling against the NumPy C API is now backwards compatible by default

NumPy now defaults to exposing a backwards compatible subset of the
C-API. This makes the use of oldest-supported-numpy unnecessary.
Libraries can override the default minimal version to be compatible with
using:

#define NPY_TARGET_VERSION NPY_1_22_API_VERSION

before including NumPy or by passing the equivalent -D option to the
compiler. The NumPy 1.25 default is NPY_1_19_API_VERSION. Because the
NumPy 1.19 C API was identical to the NumPy 1.16 one resulting programs
will be compatible with NumPy 1.16 (from a C-API perspective). This
default will be increased in future non-bugfix releases. You can still
compile against an older NumPy version and run on a newer one.

For more details please see
for-downstream-package-authors{.interpreted-text role="ref"}.

(gh-23528)

New Features
np.einsum now accepts arrays with object dtype

The code path will call python operators on object dtype arrays, much
like np.dot and np.matmul.

(gh-18053)

Add support for inplace matrix multiplication

It is now possible to perform inplace matrix multiplication via the @=
operator.

>>> import numpy as np

>>> a = np.arange(6).reshape(3, 2)
>>> print(a)
[[0 1]
 [2 3]
 [4 5]]

>>> b = np.ones((2, 2), dtype=int)
>>> a @&#8203;= b
>>> print(a)
[[1 1]
 [5 5]
 [9 9]]

(gh-21120)

Added NPY_ENABLE_CPU_FEATURES environment variable

Users may now choose to enable only a subset of the built CPU features
at runtime by specifying the NPY_ENABLE_CPU_FEATURES
environment variable. Note that these specified features must be outside
the baseline, since those are always assumed. Errors will be raised if
attempting to enable a feature that is either not supported by your CPU,
or that NumPy was not built with.

(gh-22137)

NumPy now has an np.exceptions namespace

NumPy now has a dedicated namespace making most exceptions and warnings
available. All of these remain available in the main namespace, although
some may be moved slowly in the future. The main reason for this is to
increase discoverability and add future exceptions.

(gh-22644)

np.linalg functions return NamedTuples

np.linalg functions that return tuples now return namedtuples. These
functions are eig(), eigh(), qr(), slogdet(), and svd(). The
return type is unchanged in instances where these functions return
non-tuples with certain keyword arguments (like
svd(compute_uv=False)).

(gh-22786)

String functions in np.char are compatible with NEP 42 custom dtypes

Custom dtypes that represent unicode strings or byte strings can now be
passed to the string functions in np.char.

(gh-22863)

String dtype instances can be created from the string abstract dtype classes

It is now possible to create a string dtype instance with a size without
using the string name of the dtype. For example,
type(np.dtype('U'))(8) will create a dtype that is equivalent to
np.dtype('U8'). This feature is most useful when writing generic code
dealing with string dtype classes.

(gh-22963)

Fujitsu C/C++ compiler is now supported

Support for Fujitsu compiler has been added. To build with Fujitsu
compiler, run:

python setup.py build -c fujitsu

SSL2 is now supported

Support for SSL2 has been added. SSL2 is a library that provides
OpenBLAS compatible GEMM functions. To enable SSL2, it need to edit
site.cfg and build with Fujitsu compiler. See site.cfg.example.

(gh-22982)

Improvements
NDArrayOperatorsMixin specifies that it has no __slots__

The NDArrayOperatorsMixin class now specifies that it contains no
__slots__, ensuring that subclasses can now make use of this feature
in Python.

(gh-23113)

Fix power of complex zero

np.power now returns a different result for 0^{non-zero} for complex
numbers. Note that the value is only defined when the real part of the
exponent is larger than zero. Previously, NaN was returned unless the
imaginary part was strictly zero. The return value is either 0+0j or
0-0j.

(gh-18535)

New DTypePromotionError

NumPy now has a new DTypePromotionError which is used when two dtypes
cannot be promoted to a common one, for example:

np.result_type("M8[s]", np.complex128)

raises this new exception.

(gh-22707)

np.show_config uses information from Meson

Build and system information now contains information from Meson.
np.show_config now has a new optional parameter mode to
help customize the output.

(gh-22769)

Fix np.ma.diff not preserving the mask when called with arguments prepend/append.

Calling np.ma.diff with arguments prepend and/or append now returns a
MaskedArray with the input mask preserved.

Previously, a MaskedArray without the mask was returned.

(gh-22776)

Corrected error handling for NumPy C-API in Cython

Many NumPy C functions defined for use in Cython were lacking the
correct error indicator like except -1 or except *. These have now
been added.

(gh-22997)

Ability to directly spawn random number generators

numpy.random.Generator.spawn now allows to directly spawn new independent
child generators via the numpy.random.SeedSequence.spawn mechanism.
numpy.random.BitGenerator.spawn does the same for the underlying bit
generator.

Additionally, numpy.random.BitGenerator.seed_seq now gives
direct access to the seed sequence used for initializing the bit
generator. This allows for example:

seed = 0x2e09b90939db40c400f8f22dae617151
rng = np.random.default_rng(seed)
child_rng1, child_rng2 = rng.spawn(2)
safely use rng, child_rng1, and child_rng2

Previously, this was hard to do without passing the SeedSequence
explicitly. Please see numpy.random.SeedSequence for more
information.

(gh-23195)

numpy.logspace now supports a non-scalar base argument

The base argument of numpy.logspace can now be array-like if it is
broadcastable against the start and stop arguments.

(gh-23275)

np.ma.dot() now supports for non-2d arrays

Previously np.ma.dot() only worked if a and b were both 2d. Now it
works for non-2d arrays as well as np.dot().

(gh-23322)

Explicitly show keys of .npz file in repr

NpzFile shows keys of loaded .npz file when printed.

>>> npzfile = np.load('arr.npz')
>>> npzfile
NpzFile 'arr.npz' with keys arr_0, arr_1, arr_2, arr_3, arr_4...

(gh-23357)

NumPy now exposes DType classes in np.dtypes

The new numpy.dtypes module now exposes DType classes and will contain
future dtype related functionality. Most users should have no need to
use these classes directly.

(gh-23358)

Drop dtype metadata before saving in .npy or .npz files

Currently, a *.npy file containing a table with a dtype with metadata cannot
be read back. Now, np.save and np.savez drop metadata before saving.

(gh-23371)

numpy.lib.recfunctions.structured_to_unstructured returns views in more cases

structured_to_unstructured now returns a view, if the stride between
the fields is constant. Prior, padding between the fields or a reversed
field would lead to a copy. This change only applies to ndarray,
memmap and recarray. For all other array subclasses, the behavior
remains unchanged.

(gh-23652)

Signed and unsigned integers always compare correctly

When uint64 and int64 are mixed in NumPy, NumPy typically promotes
both to float64. This behavior may be argued about but is confusing
for comparisons ==, <=, since the results returned can be incorrect
but the conversion is hidden since the result is a boolean. NumPy will
now return the correct results for these by avoiding the cast to float.

(gh-23713)

Performance improvements and changes
Faster np.argsort on AVX-512 enabled processors

32-bit and 64-bit quicksort algorithm for np.argsort gain up to 6x speed
up on processors that support AVX-512 instruction set.

Thanks to Intel corporation for sponsoring
this work.

(gh-23707)

Faster np.sort on AVX-512 enabled processors

Quicksort for 16-bit and 64-bit dtypes gain up to 15x and 9x speed up on
processors that support AVX-512 instruction set.

Thanks to Intel corporation for sponsoring
this work.

(gh-22315)

__array_function__ machinery is now much faster

The overhead of the majority of functions in NumPy is now smaller
especially when keyword arguments are used. This change significantly
speeds up many simple function calls.

(gh-23020)

ufunc.at can be much faster

Generic ufunc.at can be up to 9x faster. The conditions for this
speedup:

  • operands are aligned
  • no casting

If ufuncs with appropriate indexed loops on 1d arguments with the above
conditions, ufunc.at can be up to 60x faster (an additional 7x
speedup). Appropriate indexed loops have been added to add,
subtract, multiply, floor_divide, maximum, minimum, fmax,
and fmin.

The internal logic is similar to the logic used for regular ufuncs,
which also have fast paths.

Thanks to the D. E. Shaw group for sponsoring
this work.

(gh-23136)

Faster membership test on NpzFile

Membership test on NpzFile will no longer decompress the archive if it
is successful.

(gh-23661)

Changes
np.r_[] and np.c_[] with certain scalar values

In rare cases, using mainly np.r_ with scalars can lead to different
results. The main potential changes are highlighted by the following:

>>> np.r_[np.arange(5, dtype=np.uint8), -1].dtype
int16  # rather than the default integer (int64 or int32)
>>> np.r_[np.arange(5, dtype=np.int8), 255]
array([  0,   1,   2,   3,   4, 255], dtype=int16)

Where the second example returned:

array([ 0,  1,  2,  3,  4, -1], dtype=int8)

The first one is due to a signed integer scalar with an unsigned integer
array, while the second is due to 255 not fitting into int8 and
NumPy currently inspecting values to make this work. (Note that the
second example is expected to change in the future due to
NEP 50 <NEP50>{.interpreted-text role="ref"}; it will then raise an
error.)

(gh-22539)

Most NumPy functions are wrapped into a C-callable

To speed up the __array_function__ dispatching, most NumPy functions
are now wrapped into C-callables and are not proper Python functions or
C methods. They still look and feel the same as before (like a Python
function), and this should only improve performance and user experience
(cleaner tracebacks). However, please inform the NumPy developers if
this change confuses your program for some reason.

(gh-23020)

C++ standard library usage

NumPy builds now depend on the C++ standard library, because the
numpy.core._multiarray_umath extension is linked with the C++ linker.

(gh-23601)

Checksums
MD5
4657f046d9d9d62e4baeae9b2cc1b4ea  numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
f57f98fee3da2d98f752f755a880a508  numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
72b0ad52f96a41a7a82f511cb35c7ef1  numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a61227341b8903fa66ab0e0fdaa15430  numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bfccabfbd866c59545ce11ecdac60701  numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
22402904f194376b8d2de01481f04b03  numpy-1.25.0-cp310-cp310-win32.whl
e983b193f7d63568eac85d8bda8be62e  numpy-1.25.0-cp310-cp310-win_amd64.whl
5f6477db172f59a4fd7f591e1007e632  numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
6a85cca47af69e3d45b4efab9490af4d  numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ad1c0b4b406c9a2f1b42792502bc456b  numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
39e241f265611a9c1e89499054ead1c9  numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e36b37acf1acfbc185face67c67bfe09  numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
67862d7849b4f0f943760142f1628aed  numpy-1.25.0-cp311-cp311-win32.whl
6e8ed7865792246cac2213bad404f4da  numpy-1.25.0-cp311-cp311-win_amd64.whl
25e843425697364f50dd7288ff9d2ce1  numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
58641e53bcb1e13dfed1f5af1aff94bc  numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
ce15327793c39beecee8401356bc6c9b  numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
34b734a2c7698d59954c29fe7c0536f3  numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6652d9df23c84e54466b10f4a2a290be  numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
c228105e3c4c8887823d99e35eea9d2b  numpy-1.25.0-cp39-cp39-win32.whl
1322210ae6a874293d13c4bb3abf24ee  numpy-1.25.0-cp39-cp39-win_amd64.whl
dc36096628e65077c2a44c493606c668  numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
942b4276f8d563efb111921d5995834c  numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0fa0734a8ff952dd643e7b9826168099  numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
b236497153bc19b4a560ac485e4c2754  numpy-1.25.0.tar.gz
SHA256
8aa130c3042052d656751df5e81f6d61edff3e289b5994edcf77f54118a8d9f4  numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
9e3f2b96e3b63c978bc29daaa3700c028fe3f049ea3031b58aa33fe2a5809d24  numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
d6b267f349a99d3908b56645eebf340cb58f01bd1e773b4eea1a905b3f0e4208  numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4aedd08f15d3045a4e9c648f1e04daca2ab1044256959f1f95aafeeb3d794c16  numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6d183b5c58513f74225c376643234c369468e02947b47942eacbb23c1671f25d  numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
d76a84998c51b8b68b40448ddd02bd1081bb33abcdc28beee6cd284fe11036c6  numpy-1.25.0-cp310-cp310-win32.whl
c0dc071017bc00abb7d7201bac06fa80333c6314477b3d10b52b58fa6a6e38f6  numpy-1.25.0-cp310-cp310-win_amd64.whl
4c69fe5f05eea336b7a740e114dec995e2f927003c30702d896892403df6dbf0  numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
9c7211d7920b97aeca7b3773a6783492b5b93baba39e7c36054f6e749fc7490c  numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ecc68f11404930e9c7ecfc937aa423e1e50158317bf67ca91736a9864eae0232  numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e559c6afbca484072a98a51b6fa466aae785cfe89b69e8b856c3191bc8872a82  numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6c284907e37f5e04d2412950960894b143a648dea3f79290757eb878b91acbd1  numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
95367ccd88c07af21b379be1725b5322362bb83679d36691f124a16357390153  numpy-1.25.0-cp311-cp311-win32.whl
b76aa836a952059d70a2788a2d98cb2a533ccd46222558b6970348939e55fc24  numpy-1.25.0-cp311-cp311-win_amd64.whl
b792164e539d99d93e4e5e09ae10f8cbe5466de7d759fc155e075237e0c274e4  numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
7cd981ccc0afe49b9883f14761bb57c964df71124dcd155b0cba2b591f0d64b9  numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
5aa48bebfb41f93043a796128854b84407d4df730d3fb6e5dc36402f5cd594c0  numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5177310ac2e63d6603f659fadc1e7bab33dd5a8db4e0596df34214eeab0fee3b  numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0ac6edfb35d2a99aaf102b509c8e9319c499ebd4978df4971b94419a116d0790  numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
7412125b4f18aeddca2ecd7219ea2d2708f697943e6f624be41aa5f8a9852cc4  numpy-1.25.0-cp39-cp39-win32.whl
26815c6c8498dc49d81faa76d61078c4f9f0859ce7817919021b9eba72b425e3  numpy-1.25.0-cp39-cp39-win_amd64.whl
5b1b90860bf7d8a8c313b372d4f27343a54f415b20fb69dd601b7efe1029c91e  numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
85cdae87d8c136fd4da4dad1e48064d700f63e923d5af6c8c782ac0df8044542  numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc3fda2b36482891db1060f00f881c77f9423eead4c3579629940a3e12095fe8  numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
f1accae9a28dc3cda46a91de86acf69de0d1b5f4edd44a9b0c3ceb8036dfff19  numpy-1.25.0.tar.gz

v1.24.4

Compare Source

NumPy 1.24.4 Release Notes

NumPy 1.24.4 is a maintenance release that fixes a few bugs
discovered after the 1.24.3 release. It is the last planned
release in the 1.24.x cycle. The Python versions supported by
this release are 3.8-3.11.

Contributors

A total of 4 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Sebastian Berg
  • Hongyang Peng +
Pull requests merged

A total of 6 pull requests were merged for this release.

  • #​23720: MAINT, BLD: Pin rtools to version 4.0 for Windows builds.
  • #​23739: BUG: fix the method for checking local files for 1.24.x
  • #​23760: MAINT: Copy rtools installation from install-rtools.
  • #​23761: BUG: Fix masked array ravel order for A (and somewhat K)
  • #​23890: TYP,DOC: Annotate and document the metadata parameter of...
  • #​23994: MAINT: Update rtools installation
Checksums
MD5
25049e3aee79dde29e7a498d3ad13379  numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
579b5c357c918feaef4af03af8afb721  numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
c873a14fa4f0210884db9c05e2904286  numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
110a13ac016286059f0658b52b3646c0  numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fa67218966c0aef4094867cad7703648  numpy-1.24.4-cp310-cp310-win32.whl
6ee768803d8ebac43ee0a04e628a69f9  numpy-1.24.4-cp310-cp310-win_amd64.whl
0c918c16b58cb7f6773ea7d76e0bdaff  numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
20506ae8003faf097c6b3a8915b4140e  numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
902df9d5963e89d88a1939d94207857f  numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2543611d802c141c8276e4868b4d9619  numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
37b23a4e4e148d61dd3a515ac5dbf7ec  numpy-1.24.4-cp311-cp311-win32.whl
25e9f6bee2b65ff2a87588e717f15165  numpy-1.24.4-cp311-cp311-win_amd64.whl
f39a0cc3655a482af7d300bcaff5978e  numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
9ed27941388fdb392e8969169f3fc600  numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
dee3f0c7482f1dc8bd1cd27b9b028a2c  numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2cc0967af29df3caef9fb3520f14e071  numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8572a3a0973fa78355bcb5f737745b47  numpy-1.24.4-cp38-cp38-win32.whl
771c63f2ef0d31466bbb12362a532265  numpy-1.24.4-cp38-cp38-win_amd64.whl
5713d9dc3dff287fb72121fe1960c48d  numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
4e6718e3b655219a2a733b4fa242ca32  numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
31487f9a52ef81f8f88ec7fce8738dad  numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ea597b30187e55eb16ee31631e66f60d  numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98adbf30c67154056474001c125f6188  numpy-1.24.4-cp39-cp39-win32.whl
49c444b0e572ef45f1d92c106a36004e  numpy-1.24.4-cp39-cp39-win_amd64.whl
cdddfdeac437b0f20b4e366f00b5c42e  numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
3778338c15628caa3abd61e6f7bd46ec  numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e16bd49d5295dc1b01ed50d76229fb54  numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
3f3995540a17854a29dc79f8eeecd832  numpy-1.24.4.tar.gz
SHA256
c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64  numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1  numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4  numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6  numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc  numpy-1.24.4-cp310-cp310-win32.whl
b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e  numpy-1.24.4-cp310-cp310-win_amd64.whl
f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810  numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254  numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7  numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5  numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d  numpy-1.24.4-cp311-cp311-win32.whl
b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694  numpy-1.24.4-cp311-cp311-win_amd64.whl
1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61  numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f  numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e  numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc  numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2  numpy-1.24.4-cp38-cp38-win32.whl
692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706  numpy-1.24.4-cp38-cp38-win_amd64.whl
2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400  numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f  numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9  numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d  numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835  numpy-1.24.4-cp39-cp39-win32.whl
befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8  numpy-1.24.4-cp39-cp39-win_amd64.whl
31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef  numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a  numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2  numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463  numpy-1.24.4.tar.gz

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR has been generated by Mend Renovate. View repository job log here.

@renovate renovate bot changed the title Update dependency numpy to v1.25.0 Update dependency numpy to v1.25.1 Jul 9, 2023
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from a3cd038 to c3a8741 Compare July 9, 2023 02:31
@renovate renovate bot changed the title Update dependency numpy to v1.25.1 Update dependency numpy to v1.25.2 Aug 1, 2023
@renovate renovate bot force-pushed the renovate/numpy-1.x branch from c3a8741 to 348e0a7 Compare August 1, 2023 00:25
@renovate
Copy link
Author

renovate bot commented Aug 1, 2023

Edited/Blocked Notification

Renovate will not automatically rebase this PR, because it does not recognize the last commit author and assumes somebody else may have edited the PR.

You can manually request rebase by checking the rebase/retry box above.

⚠️ Warning: custom changes will be lost.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants