Skip to content

Commit

Permalink
re-arrange omp parallel region to make more efficient memory allocatt…
Browse files Browse the repository at this point in the history
…ions (#75)

* re-arrange omp parallel region to make more efficient memory allocations. Related to #72

* optimize R code, avoid double work in transform

* ignore bench files

* update github actions

* fix accidentally introduced segfault

* run CI only for master

* - update readme
- update NEWS

* simplify r cmd check options
  • Loading branch information
dselivanov authored Apr 18, 2023
1 parent aa9cf58 commit 873db84
Show file tree
Hide file tree
Showing 9 changed files with 132 additions and 111 deletions.
1 change: 1 addition & 0 deletions .Rbuildignore
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,4 @@ docs/
extradata/
revdep/
^CRAN-SUBMISSION$
bench/
2 changes: 0 additions & 2 deletions .github/FUNDING.yml

This file was deleted.

51 changes: 34 additions & 17 deletions .github/workflows/R-CMD-check.yaml
Original file line number Diff line number Diff line change
@@ -1,28 +1,45 @@
# For help debugging build failures open an issue on the RStudio community with the 'github-actions' tag.
# https://community.rstudio.com/new-topic?category=Package%20development&tags=github-actions
# Workflow derived from https://github.com/r-lib/actions/tree/v2/examples
# Need help debugging build failures? Start at https://github.com/r-lib/actions#where-to-find-help
on:
push:
branches:
- master
branches: [master]
pull_request:
branches:
- master
branches: [master]

name: R-CMD-check

jobs:
R-CMD-check:
runs-on: macOS-latest
runs-on: ubuntu-latest

name: (${{ matrix.config.r }})

strategy:
fail-fast: false
matrix:
config:
- {r: 'devel'}
# minimal required R version
- {r: '3.6.0'}
env:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
R_KEEP_PKG_SOURCE: yes

steps:
- uses: actions/checkout@v2
- uses: r-lib/actions/setup-r@v1
- name: Install dependencies
run: |
install.packages(c("remotes", "rcmdcheck", "Matrix"))
remotes::install_deps(dependencies = TRUE)
shell: Rscript {0}
- name: Check
run: rcmdcheck::rcmdcheck(args = "--no-manual", error_on = "error")
shell: Rscript {0}
- uses: actions/checkout@v3

- uses: r-lib/actions/setup-pandoc@v2

- uses: r-lib/actions/setup-r@v2
with:
r-version: ${{ matrix.config.r }}
use-public-rspm: true

- uses: r-lib/actions/setup-r-dependencies@v2
with:
extra-packages: any::rcmdcheck, any::Matrix
needs: check

- uses: r-lib/actions/check-r-package@v2
with:
upload-snapshots: true
44 changes: 14 additions & 30 deletions .github/workflows/test-coverage.yaml
Original file line number Diff line number Diff line change
@@ -1,47 +1,31 @@
# Workflow derived from https://github.com/r-lib/actions/tree/v2/examples
# Need help debugging build failures? Start at https://github.com/r-lib/actions#where-to-find-help
on:
push:
branches:
- master
branches: [master]
pull_request:
branches:
- master
branches: [master]

name: test-coverage

jobs:
test-coverage:
runs-on: macOS-latest
runs-on: ubuntu-latest
env:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
steps:

- uses: actions/checkout@v2

- uses: r-lib/actions/setup-r@master

- uses: r-lib/actions/setup-pandoc@master

- name: Query dependencies
run: |
install.packages('remotes')
saveRDS(remotes::dev_package_deps(dependencies = TRUE), ".github/depends.Rds", version = 2)
writeLines(sprintf("R-%i.%i", getRversion()$major, getRversion()$minor), ".github/R-version")
shell: Rscript {0}
steps:
- uses: actions/checkout@v3

- name: Cache R packages
uses: actions/cache@v1
- uses: r-lib/actions/setup-r@v2
with:
path: ${{ env.R_LIBS_USER }}
key: ${{ runner.os }}-${{ hashFiles('.github/R-version') }}-1-${{ hashFiles('.github/depends.Rds') }}
restore-keys: ${{ runner.os }}-${{ hashFiles('.github/R-version') }}-1-
use-public-rspm: true

- name: Install dependencies
run: |
install.packages(c("remotes", "Matrix"))
remotes::install_deps(dependencies = TRUE)
remotes::install_cran("covr")
shell: Rscript {0}
- uses: r-lib/actions/setup-r-dependencies@v2
with:
extra-packages: any::covr, any::Matrix
needs: coverage

- name: Test coverage
run: covr::codecov()
run: covr::codecov(quiet = FALSE)
shell: Rscript {0}
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -13,3 +13,4 @@ autom4te.cache
src/Makevars
revdep
.Rprofile
bench/
4 changes: 4 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
# rsparse dev
- faster WRMF solver see #72, #75
- updated github actions

# rsparse 0.5.1 (2022-09-11)
- update `configure` script, thanks to @david-cortes, see #73
- minor fixes in WRMF
Expand Down
93 changes: 55 additions & 38 deletions R/model_WRMF.R
Original file line number Diff line number Diff line change
Expand Up @@ -180,10 +180,15 @@ WRMF = R6::R6Class(
RhpcBLASctl::blas_set_num_threads(blas_threads_keep)
})
}

logger$debug("converting input user-item matrix")
c_ui = MatrixExtra::as.csc.matrix(x)
# c_ui = as(x, "CsparseMatrix")
logger$debug("pre-processing input")
c_ui = private$preprocess(c_ui)
c_iu = MatrixExtra::t_shallow(MatrixExtra::as.csr.matrix(x))
logger$debug("creating item-user matrix")
c_iu = MatrixExtra::t_shallow(MatrixExtra::as.csr.matrix(c_ui))
# c_iu = t(c_ui)
logger$debug("created item-user matrix")
# store item_ids in order to use them in predict method
private$item_ids = colnames(c_ui)

Expand All @@ -195,7 +200,7 @@ WRMF = R6::R6Class(
n_user = nrow(c_ui)
n_item = ncol(c_ui)

logger$trace("initializing U")
logger$debug("initializing U")
if (private$precision == "double") {
private$U = large_rand_matrix(private$rank, n_user)
# for item biases
Expand All @@ -210,7 +215,7 @@ WRMF = R6::R6Class(
}

if (is.null(self$components)) {

logger$debug("initializing components")
if (private$solver_code == 1L) { ### <- cholesky
if (private$precision == "double") {
self$components = matrix(0, private$rank, n_item)
Expand Down Expand Up @@ -331,6 +336,7 @@ WRMF = R6::R6Class(

loss_prev_iter = loss
}
logger$debug("solver finished")

if (private$precision == "double")
data.table::setattr(self$components, "dimnames", list(NULL, colnames(x)))
Expand All @@ -341,12 +347,16 @@ WRMF = R6::R6Class(
rank_ = ifelse(private$with_user_item_bias, private$rank - 1L, private$rank)
ridge = fl(diag(x = private$lambda, nrow = rank_, ncol = rank_))
XX = if (private$with_user_item_bias) self$components[-1L, , drop = FALSE] else self$components

RhpcBLASctl::blas_set_num_threads(RhpcBLASctl::get_num_cores())
private$XtX = tcrossprod(XX) + ridge
RhpcBLASctl::blas_set_num_threads(1)

# call extra transform to ensure results from transform() and fit_transform()
# are the same (due to avoid_cg, etc)
# this adds some extra computation, but not a big deal though
self$transform(x)
# self$transform(x)
private$transform_(c_iu, ...)
},
# project new users into latent user space - just make ALS step given fixed items matrix
#' @description create user embeddings for new input
Expand All @@ -366,6 +376,41 @@ WRMF = R6::R6Class(
x = MatrixExtra::t_shallow(x)
}

x = private$preprocess(x)

if (self$global_bias != 0. && private$feedback == "explicit")
x@x = x@x - self$global_bias

private$transform_(x, ...)
}
),
#### private -----
private = list(
solver_code = NULL,
cg_steps = NULL,
scorers = NULL,
lambda = NULL,
dynamic_lambda = FALSE,
rank = NULL,
non_negative = NULL,
cnt_u = NULL,
# user factor matrix = rank * n_users
U = NULL,
# item factor matrix = rank * n_items
I = NULL,
# preprocess - transformation of input matrix before passing it to ALS
# for example we can scale each row or apply log() to values
# this is essentially "confidence" transformation from WRMF article
preprocess = NULL,
feedback = NULL,
precision = NULL,
XtX = NULL,
solver = NULL,
with_user_item_bias = NULL,
with_global_bias = NULL,
init_user_item_bias = NULL,
transform_ = function(x, ...) {
logger$debug('starting transform')
if (private$feedback == "implicit" ) {
logger$trace("WRMF$transform(): calling `RhpcBLASctl::blas_set_num_threads(1)` (to avoid thread contention)")
blas_threads_keep = RhpcBLASctl::blas_get_num_procs()
Expand All @@ -375,11 +420,6 @@ WRMF = R6::R6Class(
RhpcBLASctl::blas_set_num_threads(blas_threads_keep)
})
}

x = private$preprocess(x)
if (self$global_bias != 0. && private$feedback == "explicit")
x@x = x@x - self$global_bias

if (private$precision == "double") {
res = matrix(0, nrow = private$rank, ncol = ncol(x))
} else {
Expand All @@ -389,7 +429,7 @@ WRMF = R6::R6Class(
if (private$with_user_item_bias) {
res[1, ] = if(private$precision == "double") 1.0 else float::fl(1.0)
}

logger$debug('starting transform solver')
loss = private$solver(
x,
self$components,
Expand All @@ -399,42 +439,17 @@ WRMF = R6::R6Class(
cnt_X = private$cnt_u,
avoid_cg = TRUE
)
logger$debug('finished transform solver')

res = t(res)

if (private$precision == "double")
setattr(res, "dimnames", list(colnames(x), NULL))
else
setattr(res@Data, "dimnames", list(colnames(x), NULL))

logger$debug('finished transform')
res
}
),
#### private -----
private = list(
solver_code = NULL,
cg_steps = NULL,
scorers = NULL,
lambda = NULL,
dynamic_lambda = FALSE,
rank = NULL,
non_negative = NULL,
cnt_u = NULL,
# user factor matrix = rank * n_users
U = NULL,
# item factor matrix = rank * n_items
I = NULL,
# preprocess - transformation of input matrix before passing it to ALS
# for example we can scale each row or apply log() to values
# this is essentially "confidence" transformation from WRMF article
preprocess = NULL,
feedback = NULL,
precision = NULL,
XtX = NULL,
solver = NULL,
with_user_item_bias = NULL,
with_global_bias = NULL,
init_user_item_bias = NULL
)
)

Expand Down Expand Up @@ -465,7 +480,9 @@ als_implicit = function(
} else {
XX = X
}
RhpcBLASctl::blas_set_num_threads(RhpcBLASctl::get_num_cores())
XtX = tcrossprod(XX) + ridge
RhpcBLASctl::blas_set_num_threads(1)
}
if (is.null(global_bias_base)) {
global_bias_base = numeric()
Expand Down
7 changes: 0 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,13 +11,6 @@

We've paid some attention to the implementation details - we try to avoid data copies, utilize multiple threads via OpenMP and use SIMD where appropriate. Package **allows to work on datasets with millions of rows and millions of columns**.


### Support

Please reach us if you need **commercial support** - [[email protected]](mailto:[email protected]).



# Features

### Classification/Regression
Expand Down
Loading

0 comments on commit 873db84

Please sign in to comment.