MCMC Main work: Overview of MCMC. Methods of accelerating MCMC. Others: Compare acceleration effect. Catalogue Introductions 1. Notations 1.1 1.2 1.3 1.4 2. Preparatory knowledge 2.1 Bayesian inference 2.2 Monte Carlo integral 2.3 2.4 3. Basic MCMC 3.1 Metroplis algorithm 3.2 Metroplis-Hastings algorithm (MH) 3.3 Gibbs sampler 4. Adaptive MCMC 4.1 General Adaptive Metropolis (AM) Algorithm 4.2 Adaptive Rejection Metropolis Sampling (ARMS) 4.3 Independent doubly adaptive rejection Metropolis sampling (IA$^2$RMS) 5. Gradient-based techniques 5.1 Metropolis adjusted Langevin algorithm (MALA) 5.2 Hamiltonian Monte Carlo (HMC) 5.3 Riemann manifold MALA (MMALA) and HMC (RMHMC) 5.4 The ”No‐U‐Turn Sampler” (NUTS) 6. Importance Sampling 6.1 Stantard importance sampling 6.2 Adaptive importance sampling 6.3 Convergence and variance 6.4 Group inportance sampling 6.5 Sequential inportance sampling 7. MC-within-MCMC methods 7.1 Multiple-try Metroplis (MTM) 7.2 Independent multiple-try Metroplis (I-MTM) schemes 7.3 Group Metroplis sampling Summary 小结 Notes Reference 致谢 后记