This repository is the code of the paper "Learning visual-based deformable object rearrangement with local graph neural networks", published in Complex & Intelligent SystemsL.
If you find this code useful in your research, please consider citing:
@article{deng2023learning,
title={Learning visual-based deformable object rearrangement with local graph neural networks},
author={Deng, Yuhong and Wang, Xueqian and Chen, Lipeng},
journal={Complex \& Intelligent Systems},
pages={1--14},
year={2023},
publisher={Springer}
}
This simulation environment is based on pybullet. You can follow the instructions in DeformableRavens to setup the simulator.
-
Clone this repository.
-
Install the following packages in the created conda environment:
- pytorch and torchvision: `
- tensorflow:
- tensorflow_addons
- pybullet:
- torch_geometric
-
Run the following script to generate demonstrations for model training:
python collect.py -eposide_num 1100 -task_type "rope_line"
where
-task_type
specifies the deformable object rearrangement task type (rope_line|rope_l|rope_v|rope_n|ring_circle|ring_square|ring_move|cloth_fold|cloth_flatten|cloth_fold_a)
-
Train Model:
python main.py --mode train -task_type "rope_line"
python main_multi.py --mode train
where
main.py
represent single task learning fashion,main_multi.py
represent multi-task learning fashion
-
Evaluate Model:
python main.py --mode test -task_type "rope_line"
python main_multi.py --mode test