-
Notifications
You must be signed in to change notification settings - Fork 5
Model Interface #5
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,24 @@ | ||
| { | ||
| "name": "CustomLogs", | ||
| "properties": { | ||
| "timestamp": { | ||
| "type": "string", | ||
| "format": "date", | ||
| "pattern": "(\\d\\d\\d\\d-([0-2])?\\d-([0-3])?\\dT?([0-2])?\\d:([0-5])?\\d:([0-5])?\\d\\.\\d?\\d?\\d?Z?)" | ||
| }, | ||
| "some_property": { | ||
| "type": "string" | ||
| }, | ||
| "some_other_property": { | ||
| "type": "string" | ||
| }, | ||
| "an_integer_property": { | ||
| "type": "integer" | ||
| }, | ||
| "a_numeric_property": { | ||
| "type": "string" | ||
| } | ||
| }, | ||
| "required": ["timestamp", "some_property"], | ||
| "additionalProperties": false | ||
| } |
This file was deleted.
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,156 @@ | ||
| from pyspark.ml.feature import StandardScaler, StandardScalerModel, StringIndexer, StringIndexerModel | ||
| from pyspark.ml.linalg import Vectors, VectorUDT | ||
| from pyspark.storagelevel import StorageLevel | ||
| from pyspark.sql import functions as F | ||
| from pyspark.sql.functions import array | ||
|
|
||
| from baskerville.models.model_interface import ModelInterface | ||
| from baskerville.spark.helpers import map_to_array | ||
| from baskerville.spark.udfs import to_dense_vector_udf | ||
| from pyspark_iforest.ml.iforest import IForest, IForestModel | ||
| import os | ||
| import numpy as np | ||
|
|
||
| from baskerville.util.file_manager import FileManager | ||
|
|
||
|
|
||
| class AnomalyModel(ModelInterface): | ||
|
|
||
| def __init__(self, feature_map_column='features', | ||
| features=None, | ||
| categorical_features=[], | ||
| prediction_column="prediction", | ||
| threshold=0.5, | ||
| score_column="score", | ||
| num_trees=100, max_samples=1.0, max_features=1.0, max_depth=10, | ||
| contamination=0.1, bootstrap=False, approximate_quantile_relative_error=0., | ||
| seed=777, | ||
| scaler_with_mean=False, scaler_with_std=True): | ||
| super().__init__() | ||
| self.prediction_column = prediction_column | ||
| self.score_column = score_column | ||
| self.num_trees = num_trees | ||
| self.max_samples = max_samples | ||
| self.max_features = max_features | ||
| self.max_depth = max_depth | ||
| self.contamination = contamination | ||
| self.bootstrap = bootstrap | ||
| self.approximate_quantile_relative_error = approximate_quantile_relative_error | ||
| self.seed = seed | ||
| self.scaler_with_mean = scaler_with_mean | ||
| self.scaler_with_std = scaler_with_std | ||
| self.features = features | ||
| self.categorical_features = categorical_features | ||
| self.feature_map_column = feature_map_column | ||
|
|
||
| self.storage_level = StorageLevel.OFF_HEAP | ||
mkaranasou marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| self.scaler_model = None | ||
| self.iforest_model = None | ||
| self.threshold = threshold | ||
| self.indexes = None | ||
| self.features_values_column = 'features_values' | ||
| self.features_values_scaled = 'features_values_scaled' | ||
|
|
||
| def set_storage_level(self, storage_level): | ||
| self.storage_level = storage_level | ||
|
|
||
| def build_features_vectors(self, df): | ||
| res = map_to_array( | ||
| df, | ||
| map_col=self.feature_map_column, | ||
| array_col=self.features_values_column, | ||
| map_keys=self.features | ||
| ).persist(self.storage_level) | ||
| df.unpersist() | ||
|
|
||
| return res.withColumn( | ||
| self.features_values_column, | ||
| to_dense_vector_udf(self.features_values_column) | ||
| ) | ||
|
|
||
| def _create_indexes(self, df): | ||
| self.indexes = [] | ||
| for c in self.categorical_features: | ||
| indexer = StringIndexer(inputCol=c, outputCol=f'{c}_index') \ | ||
| .setHandleInvalid('keep') \ | ||
| .setStringOrderType('alphabetAsc') | ||
| self.indexes.append(indexer.fit(df)) | ||
|
|
||
| def _add_categorical_features(self, df, feature_column): | ||
| index_columns = [] | ||
| for index_model in self.indexes: | ||
| df = index_model.transform(df) | ||
| index_columns.append(index_model.getOutputCol()) | ||
|
|
||
| add_categories = F.udf(lambda features, arr: Vectors.dense(np.append(features, [v for v in arr])), | ||
| VectorUDT()) | ||
|
||
| df = df.withColumn('features_all', add_categories(feature_column, array(*index_columns))) \ | ||
| .drop(*index_columns) \ | ||
| .drop(feature_column) \ | ||
mkaranasou marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| .withColumnRenamed('features_all', feature_column) | ||
| return df | ||
|
|
||
| def train(self, df): | ||
| df = self.build_features_vectors(df) | ||
|
|
||
| scaler = StandardScaler() | ||
| scaler.setInputCol(self.features_values_column) | ||
| scaler.setOutputCol(self.features_values_scaled) | ||
| scaler.setWithMean(self.scaler_with_mean) | ||
| scaler.setWithStd(self.scaler_with_std) | ||
| self.scaler_model = scaler.fit(df) | ||
| df = self.scaler_model.transform(df).persist( | ||
| self.storage_level | ||
| ) | ||
| if len(self.categorical_features): | ||
| self._create_indexes(df) | ||
| self._add_categorical_features(df, self.features_values_scaled) | ||
|
|
||
| iforest = IForest( | ||
| featuresCol=self.features_values_scaled, | ||
| predictionCol=self.prediction_column, | ||
| # anomalyScore=self.score_column, | ||
| numTrees=self.num_trees, | ||
| maxSamples=self.max_samples, | ||
| maxFeatures=self.max_features, | ||
| maxDepth=self.max_depth, | ||
| contamination=self.contamination, | ||
| bootstrap=self.bootstrap, | ||
| approxQuantileRelativeError=self.approximate_quantile_relative_error, | ||
| numCategoricalFeatures=len(self.categorical_features) | ||
| ) | ||
| iforest.setSeed(self.seed) | ||
| params = {'threshold': self.threshold} | ||
| self.iforest_model = iforest.fit(df, params) | ||
| df.unpersist() | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is this the last part where
Collaborator
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Right. Should not be here. I call persist both in train/predict in |
||
|
|
||
| def predict(self, df): | ||
| df = self.build_features_vectors(df) | ||
| df = self.scaler_model.transform(df) | ||
| if len(self.categorical_features): | ||
| df = self._add_categorical_features(df, self.features_values_scaled) | ||
| df = self.iforest_model.transform(df) | ||
| df = df.withColumnRenamed('anomalyScore', self.score_column) | ||
| return df | ||
|
|
||
| def save(self, path, spark_session=None): | ||
| file_manager = FileManager(path, spark_session) | ||
| file_manager.save_to_file(self.get_params(), os.path.join(path, 'params.json'), format='json') | ||
| self.iforest_model.write().overwrite().save(os.path.join(path, 'iforest')) | ||
| self.scaler_model.write().overwrite().save(os.path.join(path, 'scaler')) | ||
|
|
||
| if len(self.categorical_features): | ||
| for feature, index in zip(self.categorical_features, self.indexes): | ||
| index.write().overwrite().save(os.path.join(path, 'indexes', feature)) | ||
|
||
|
|
||
| def load(self, path, spark_session=None): | ||
| self.iforest_model = IForestModel.load(os.path.join(path, 'iforest')) | ||
| self.scaler_model = StandardScalerModel().load(os.path.join(path, 'scaler')) | ||
|
||
|
|
||
| file_manager = FileManager(path, spark_session) | ||
| params = file_manager.load_from_file(os.path.join(path, 'params.json'), format='json') | ||
| self.set_params(**params) | ||
|
|
||
| self.indexes = [] | ||
| for feature in self.categorical_features: | ||
| self.indexes.append(StringIndexerModel.load(os.path.join(path, 'indexes', feature))) | ||
Uh oh!
There was an error while loading. Please reload this page.