Skip to content

Commit

Permalink
Correct the number of conv layers mentioned in the description of dli…
Browse files Browse the repository at this point in the history
…b_face_recognition_resnet_model_v1
  • Loading branch information
ksachdeva committed Dec 20, 2018
1 parent ae50fe3 commit 97a7476
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ This repository contains trained models created by me (Davis King). They are pr

* dlib_face_recognition_resnet_model_v1.dat.bz2

This model is a ResNet network with 27 conv layers. It's essentially a version of the ResNet-34 network from the paper Deep Residual Learning for Image Recognition by He, Zhang, Ren, and Sun with a few layers removed and the number of filters per layer reduced by half.
This model is a ResNet network with 29 conv layers. It's essentially a version of the ResNet-34 network from the paper Deep Residual Learning for Image Recognition by He, Zhang, Ren, and Sun with a few layers removed and the number of filters per layer reduced by half.

The network was trained from scratch on a dataset of about 3 million faces. This dataset is derived from a number of datasets. The face scrub dataset (http://vintage.winklerbros.net/facescrub.html), the VGG dataset (http://www.robots.ox.ac.uk/~vgg/data/vgg_face/), and then a large number of images I scraped from the internet. I tried as best I could to clean up the dataset by removing labeling errors, which meant filtering out a lot of stuff from VGG. I did this by repeatedly training a face recognition CNN and then using graph clustering methods and a lot of manual review to clean up the dataset. In the end about half the images are from VGG and face scrub. Also, the total number of individual identities in the dataset is 7485. I made sure to avoid overlap with identities in LFW.

Expand Down

0 comments on commit 97a7476

Please sign in to comment.