-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
277 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
from comfy.utils import load_torch_file | ||
from comfy.sd import load_lora_for_models | ||
import folder_paths | ||
import glob | ||
import logging | ||
import os | ||
import os.path | ||
import random | ||
import re | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class DarkPopLoraFromStack(object): | ||
""" | ||
Accepts a LoRA stack and extracts the first LoRA it finds, removing it from the stack | ||
""" | ||
|
||
def __init__(self): | ||
pass | ||
|
||
@classmethod | ||
def INPUT_TYPES(cls): | ||
return { | ||
"required": { | ||
"LORA_STACK": ( | ||
"LORA_STACK", | ||
{ | ||
"forceInput": True, | ||
}, | ||
), | ||
}, | ||
} | ||
|
||
RETURN_TYPES = ("LORA_STACK", "STRING") | ||
RETURN_NAMES = ("LORA_STACK", "EXTRACTED_LORA") | ||
FUNCTION = "extract_lora_from_stack" | ||
|
||
CATEGORY = "DarkPrompt" | ||
|
||
def extract_lora_from_stack(self, LORA_STACK): | ||
popped_lora = "" | ||
if LORA_STACK: | ||
popped_lora = LORA_STACK.pop(0) | ||
popped_lora = popped_lora[0] | ||
|
||
return (LORA_STACK, popped_lora) | ||
|
||
|
||
class DarkLoraStackFromString(object): | ||
""" | ||
Takes in a string (prompt), scans it for LoRA tags in the format <lora:somelora:x:y> and creates a LoRA stack from the string | ||
Optionally strips the LoRAs out of the string it empts | ||
""" | ||
|
||
def __init__(self): | ||
pass | ||
|
||
@classmethod | ||
def INPUT_TYPES(cls): | ||
return { | ||
"required": { | ||
"string_in": ( | ||
"STRING", | ||
{ | ||
"default": "", | ||
"forceInput": True, | ||
}, | ||
), | ||
}, | ||
"optional": { | ||
"model": ("MODEL",), | ||
"clip": ("CLIP",), | ||
}, | ||
} | ||
|
||
RETURN_TYPES = ( | ||
"MODEL", | ||
"CLIP", | ||
"STRING", | ||
"LORA_STACK", | ||
) | ||
RETURN_NAMES = ( | ||
"MODEL", | ||
"CLIP", | ||
"string_out", | ||
"LORA_STACK", | ||
) | ||
FUNCTION = "load_loras_from_string" | ||
|
||
CATEGORY = "DarkPrompt" | ||
|
||
def load_loras_from_string(self, string_in, model=None, clip=None): | ||
lora_pattern = r"\<lora\:(?P<lora_name>[0-9a-zA-Z\_\-\.\s\/\(\)]+)\:(?P<model_weight>[\d\.]+):?(?P<clip_weight>[\d\.]*)\>" | ||
lora_stack = list() | ||
lora_folder = folder_paths.get_folder_paths("loras")[0] | ||
lora_to_load = [] | ||
|
||
for lora in re.findall(lora_pattern, string_in): | ||
try: | ||
lora_to_load.append( | ||
{ | ||
"name": ( | ||
lora[0] | ||
if ".safetensors" in lora[0] | ||
else "%s.safetensors" % (lora[0]) | ||
), | ||
"path": os.path.join( | ||
lora_folder, | ||
( | ||
lora[0] | ||
if ".safetensors" in lora[0] | ||
else "%s.safetensors" % (lora[0]) | ||
), | ||
), | ||
"model_weight": float(lora[1]), | ||
"clip_weight": ( | ||
float(lora[2]) if len(lora[2]) > 0 else float(lora[1]) | ||
), | ||
} | ||
) | ||
except ValueError: | ||
logger.warning( | ||
"This line appears to have an invalid LoRA weight: %s" % (lora) | ||
) | ||
|
||
this_lora_model = model | ||
this_lora_clip = clip | ||
|
||
for lora in lora_to_load: | ||
# If a model and clip were passed, load the LoRA, otherwise just | ||
# extend the set | ||
if not os.path.isfile(lora["path"]): | ||
print( | ||
"SKIP LOADING LOADING LoRA THAT DOES NOT EXIST: %s" % (lora["path"]) | ||
) | ||
continue | ||
if model and clip: | ||
lora_torch = load_torch_file( | ||
lora["path"], | ||
safe_load=True, | ||
) | ||
|
||
this_lora_model, this_lora_clip = load_lora_for_models( | ||
model, | ||
clip, | ||
lora_torch, | ||
float(lora["model_weight"]), | ||
float(lora["clip_weight"]), | ||
) | ||
|
||
lora_stack.extend( | ||
[ | ||
( | ||
lora["name"], | ||
float(lora["model_weight"]), | ||
float(lora["clip_weight"]), | ||
) | ||
] | ||
) | ||
|
||
# Remove the LoRA tags from the string so a clean string can be passed | ||
# to the sampler | ||
string_in = re.sub(lora_pattern, "", string_in) | ||
|
||
return ( | ||
this_lora_model, | ||
this_lora_clip, | ||
string_in, | ||
lora_stack, | ||
) | ||
|
||
|
||
class DarkLoadAllTheLoras(object): | ||
""" | ||
Takes in a string (prompt), scans it for LoRA tags in the format <lora:somelora:x:y> and creates a LoRA stack from the string | ||
Optionally strips the LoRAs out of the string it empts | ||
""" | ||
|
||
def __init__(self): | ||
pass | ||
|
||
@classmethod | ||
def INPUT_TYPES(cls): | ||
return { | ||
"required": { | ||
"model": ("MODEL",), | ||
"clip": ("CLIP",), | ||
}, | ||
} | ||
|
||
RETURN_TYPES = ( | ||
"MODEL", | ||
"CLIP", | ||
) | ||
RETURN_NAMES = ( | ||
"MODEL", | ||
"CLIP", | ||
) | ||
FUNCTION = "load_all_the_loras" | ||
|
||
CATEGORY = "DarkPrompt" | ||
|
||
def load_all_the_loras(self, model, clip): | ||
lora_folder = folder_paths.get_folder_paths("loras")[0] | ||
loras_to_load = [] | ||
|
||
search_for = lora_folder + "/*.safetensors" | ||
print("search_for: %s" % (search_for)) | ||
for lora_file in glob.glob(search_for): | ||
logger.warning("Found lora: %s" % (lora_file)) | ||
print("Found lora: %s" % (lora_file)) | ||
if os.path.basename(lora_file) in [n["name"] for n in loras_to_load]: | ||
logger.warning("%s is already loaded" % (lora_file)) | ||
else: | ||
loras_to_load.append( | ||
{ | ||
"name": os.path.basename(lora_file), | ||
"path": lora_file, | ||
"model_weight": 0.7, | ||
"clip_weight": 0.0, | ||
} | ||
) | ||
|
||
print(loras_to_load) | ||
|
||
this_lora_model = model | ||
this_lora_clip = clip | ||
|
||
for lora in loras_to_load: | ||
logger.warning("Loading lora: %s" % (lora)) | ||
lora_torch = load_torch_file( | ||
lora["path"], | ||
safe_load=True, | ||
) | ||
|
||
this_lora_model, this_lora_clip = load_lora_for_models( | ||
this_lora_model, | ||
this_lora_clip, | ||
lora_torch, | ||
float(lora["model_weight"]), | ||
float(lora["clip_weight"]), | ||
) | ||
|
||
return ( | ||
this_lora_model, | ||
this_lora_clip, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters