This library does unsafe things like pass around function pointer addresses as integers. Use at your own risk.
If you're unfamiliar with why passing function pointers' addresses around as integers might be unsafe, then you shouldn't use this library.
- Python 
>=3.10 numballvmlite
Use nix develop from the repository root to avoid dependency hell.
pip install numbsql
These are almost the same as decorating a Python function with numba.jit.
from typing import Optional
from numbsql import sqlite_udf
@sqlite_udf
def add_one(x: Optional[int]) -> Optional[int]:
    """Add one to `x` if `x` is not NULL."""
    if x is not None:
        return x + 1
    return NoneSimilar to scalar functions, we register the function with a sqlite3.Connection object:
>>> import sqlite3
>>> from numbsql import create_function
>>> con = sqlite3.connect(":memory:")
>>> create_function(con, "add_one", 1, add_one)
>>> con.execute("SELECT add_one(1)").fetchall()
[(2,)]These follow the API of the Python standard library's
sqlite3.Connection.create_aggregate method. The difference with numbsql
aggregates is that they require two decorators: numba.experimental.jit_class and
numbsql.sqlite_udaf. Let's define the avg (arithmetic mean) function for
64-bit floating point numbers.
from typing import Optional
from numba.experimental import jitclass
from numbsql import sqlite_udaf
@sqlite_udaf
@jitclass
class Avg:
    total: float
    count: int
    def __init__(self):
        self.total = 0.0
        self.count = 0
    def step(self, value: Optional[float]) -> None:
        if value is not None:
            self.total += value
            self.count += 1
    def finalize(self) -> Optional[float]:
        if not self.count:
            return None
        return self.total / self.countYou can also define window functions for use with SQLite's OVER construct:
from typing import Optional
from numba.experimental import jitclass
from numbsql import sqlite_udaf
@sqlite_udaf
@jitclass
class WinAvg:  # pragma: no cover
    total: float
    count: int
    def __init__(self) -> None:
        self.total = 0.0
        self.count = 0
    def step(self, value: Optional[float]) -> None:
        if value is not None:
            self.total += value
            self.count += 1
    def finalize(self) -> Optional[float]:
        count = self.count
        if count:
            return self.total / count
        return None
    def value(self) -> Optional[float]:
        return self.finalize()
    def inverse(self, value: Optional[float]) -> None:
        if value is not None:
            self.total -= value
            self.count -= 1Similar to scalar functions, we register the function with a sqlite3.Connection object:
>>> import sqlite3
>>> from numbsql import create_aggregate
>>> con = sqlite3.connect(":memory:")
>>> create_aggregate(con, "winavg", 1, WinAvg)
>>> con.execute("CREATE TABLE t (x INTEGER, y TEXT)")
>>> con.execute("INSERT INTO t VALUES (1, 'a'), (2, 'a'), (3, 'b')")
>>> con.execute("SELECT winavg(x) FROM t").fetchall()
[(2.0,)]
>>> con.execute("SELECT winavg(x) OVER (PARTITION BY y) FROM t").fetchall()
[(1.5,), (3.0,)]Some string operations are available:
from typing import Optional
from numbsql import sqlite_udf
@sqlite_udf
def numbsql_len(s: Optional[str]) -> Optional[int]:
    return len(s) if s is not None else None>>> import sqlite3
>>> from numbsql import create_function
>>> con = sqlite3.connect(":memory:")
>>> create_function(con, "numbsql_len", 1, numbsql_len)
>>> con.execute("CREATE TABLE t (name TEXT)")
>>> con.execute("INSERT INTO t VALUES ('Alice', 'Bob', 'Susan', 'Joe')")
>>> con.execute("SELECT numbsql_len(x) FROM t").fetchall()
[(5,), (3,), (5,), (3,)]