|
142 | 142 | },
|
143 | 143 | {
|
144 | 144 | "cell_type": "code",
|
145 |
| - "execution_count": 32, |
| 145 | + "execution_count": 36, |
146 | 146 | "metadata": {
|
147 | 147 | "collapsed": false
|
148 | 148 | },
|
|
154 | 154 | "_________________________________________________________________\n",
|
155 | 155 | "Layer (type) Output Shape Param # \n",
|
156 | 156 | "=================================================================\n",
|
157 |
| - "lstm_4 (LSTM) (None, 200, 256) 274432 \n", |
| 157 | + "lstm_7 (LSTM) (None, 200, 256) 274432 \n", |
158 | 158 | "_________________________________________________________________\n",
|
159 |
| - "lstm_5 (LSTM) (None, 200, 256) 525312 \n", |
| 159 | + "lstm_8 (LSTM) (None, 200, 256) 525312 \n", |
160 | 160 | "_________________________________________________________________\n",
|
161 |
| - "lstm_6 (LSTM) (None, 200, 256) 525312 \n", |
| 161 | + "lstm_9 (LSTM) (None, 200, 256) 525312 \n", |
162 | 162 | "_________________________________________________________________\n",
|
163 |
| - "dense_2 (Dense) (None, 200, 11) 2827 \n", |
| 163 | + "dense_3 (Dense) (None, 200, 11) 2827 \n", |
164 | 164 | "_________________________________________________________________\n",
|
165 |
| - "activation_2 (Activation) (None, 200, 11) 0 \n", |
| 165 | + "activation_3 (Activation) (None, 200, 11) 0 \n", |
166 | 166 | "=================================================================\n",
|
167 | 167 | "Total params: 1,327,883.0\n",
|
168 | 168 | "Trainable params: 1,327,883.0\n",
|
|
188 | 188 | },
|
189 | 189 | {
|
190 | 190 | "cell_type": "code",
|
191 |
| - "execution_count": 35, |
| 191 | + "execution_count": 38, |
192 | 192 | "metadata": {
|
193 | 193 | "collapsed": false
|
194 | 194 | },
|
|
197 | 197 | "name": "stdout",
|
198 | 198 | "output_type": "stream",
|
199 | 199 | "text": [
|
200 |
| - "Epoch 1/5\n", |
201 |
| - " 384/5000 [=>............................] - ETA: 48s - loss: 0.5255\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b" |
| 200 | + "Epoch 1/1\n", |
| 201 | + "52s - loss: 0.1519\n" |
202 | 202 | ]
|
203 |
| - }, |
| 203 | + } |
| 204 | + ], |
| 205 | + "source": [ |
| 206 | + "hist = model.fit(x, y, batch_size=64, nb_epoch=1, verbose=2)" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": 40, |
| 212 | + "metadata": { |
| 213 | + "collapsed": false |
| 214 | + }, |
| 215 | + "outputs": [ |
204 | 216 | {
|
205 |
| - "ename": "KeyboardInterrupt", |
206 |
| - "evalue": "", |
207 |
| - "output_type": "error", |
208 |
| - "traceback": [ |
209 |
| - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
210 |
| - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
211 |
| - "\u001b[0;32m<ipython-input-35-341b5a40c57b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mhist\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnb_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
212 |
| - "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/models.pyc\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 843\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 844\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 845\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 846\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 847\u001b[0m def evaluate(self, x, y, batch_size=32, verbose=1,\n", |
213 |
| - "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/engine/training.pyc\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[0mval_f\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_f\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval_ins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_ins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1484\u001b[0m \u001b[0mcallback_metrics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcallback_metrics\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1485\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 1486\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1487\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
214 |
| - "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/engine/training.pyc\u001b[0m in \u001b[0;36m_fit_loop\u001b[0;34m(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)\u001b[0m\n\u001b[1;32m 1138\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'size'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_ids\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1139\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_index\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1140\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1141\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
215 |
| - "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.pyc\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2073\u001b[0m \u001b[0msession\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_session\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2074\u001b[0m updated = session.run(self.outputs + [self.updates_op],\n\u001b[0;32m-> 2075\u001b[0;31m feed_dict=feed_dict)\n\u001b[0m\u001b[1;32m 2076\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mupdated\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2077\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
216 |
| - "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 765\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 766\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 767\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 768\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 769\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
217 |
| - "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m--> 965\u001b[0;31m feed_dict_string, options, run_metadata)\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
218 |
| - "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1013\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1014\u001b[0m return self._do_call(_run_fn, self._session, feed_dict, fetch_list,\n\u001b[0;32m-> 1015\u001b[0;31m target_list, options, run_metadata)\n\u001b[0m\u001b[1;32m 1016\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1017\u001b[0m return self._do_call(_prun_fn, self._session, handle, feed_dict,\n", |
219 |
| - "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1020\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1021\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1022\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1023\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1024\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
220 |
| - "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(session, feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1002\u001b[0m return tf_session.TF_Run(session, options,\n\u001b[1;32m 1003\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1004\u001b[0;31m status, run_metadata)\n\u001b[0m\u001b[1;32m 1005\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1006\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msession\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
221 |
| - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " |
| 217 | + "name": "stdout", |
| 218 | + "output_type": "stream", |
| 219 | + "text": [ |
| 220 | + "['1123456789', '0123456789', '6922345678', '9113456689', '0023456789', '0123456789', '9123456789', '0123456789', '2223456789', '0023456789', '0123456789', '4013345678', '1023456789', '0013456789', '0123456789', '1023456789', '2123456789', '1123456789', '2133456789', '*112345678', '3112456789', '0123456789', '1023556789', '0123456789', '2023456789', '0123456789', '1123456789', '0623456679', '9223456789', '0223456789', '0223456789', '5123345678', '1113456789', '0123456789', '1123456789', '1123456789', '0123456789', '0123456789', '3113456789', '0123456789', '1113456789', '1123456789', '0123456789', '1123456789', '6122345678', '2123456789', '8023445778', '0123456789', '0113456789', '5223355679', '0823455678', '1023456789', '0123456789', '1123456789', '0023456789', '0123456789', '0123456789', '8023455678', '0123456789', '0123456789', '9123456789', '3123456789', '1233456789', '0123456789', '1123456789', '8123456789', '8123455789', '1023456789', '1113456789', '0123456789', '0023456789', '0023446789', '1123456789', '1013456789', '1023456789', '0123456789', '1123456789', '0123456789', '0023456789', '1123456789', '0123456789', '*012345678', '0123456789', '0323456789', '0123456789', '1123456789', '1123456789', '1123456789', '5123345678', '1123456789', '4122345678', '2123456789', '0123456789', '1123456789', '7123345678', '8123456689', '0223456789', '1123456789', '6122345678', '9123456789', '1133456789', '3113456789', '0023456789', '3223456789', '0023456789', '5122345678', '1123556789', '1123456789', '9923456689', '2123456789', '1123456789', '2123456789', '0123456789', '1134456789', '0123456789', '0123456789', '0123456789', '0123456789', '0123456789', '9023456789', '9123456789', '1123456789', '3123456789', '0123456789', '6112345678', '0123456789', '0123456789', '1823455789']\n" |
222 | 221 | ]
|
223 | 222 | }
|
224 | 223 | ],
|
225 | 224 | "source": [
|
226 |
| - "hist = model.fit(x, y, batch_size=64, nb_epoch=1, verbose=2)" |
| 225 | + "import numpy\n", |
| 226 | + "def mnrnd(probs):\n", |
| 227 | + " rnd = numpy.random.random()\n", |
| 228 | + " for i in xrange(len(probs)):\n", |
| 229 | + " rnd -= probs[i]\n", |
| 230 | + " if rnd <= 0:\n", |
| 231 | + " return i\n", |
| 232 | + " return i\n", |
| 233 | + "\n", |
| 234 | + "sentences = numpy.zeros((128, n_timestamps, max_features))\n", |
| 235 | + "sentences[:, 0, 0] = 1\n", |
| 236 | + "\n", |
| 237 | + "# Start sampling char-sequences. At each iteration i the probability over\n", |
| 238 | + "# the i-th character of each sequences is computed. \n", |
| 239 | + "for i in numpy.arange(10):\n", |
| 240 | + " probs = model.predict_proba(sentences, verbose=2)[:,i,:]\n", |
| 241 | + " # Go over each sequence and sample the i-th character.\n", |
| 242 | + " for j in numpy.arange(len(sentences)):\n", |
| 243 | + " sentences[j, i+1, mnrnd(probs[j, :])] = 1\n", |
| 244 | + "sentences = [sentence[1:].nonzero()[1] for sentence in sentences]\n", |
| 245 | + "\n", |
| 246 | + "# Convert to readable text.\n", |
| 247 | + "text = []\n", |
| 248 | + "for sentence in sentences:\n", |
| 249 | + " text.append(''.join([dct[word] for word in sentence]))\n", |
| 250 | + "print text\n" |
227 | 251 | ]
|
228 | 252 | },
|
229 | 253 | {
|
230 | 254 | "cell_type": "code",
|
231 |
| - "execution_count": null, |
| 255 | + "execution_count": 43, |
232 | 256 | "metadata": {
|
233 |
| - "collapsed": true |
| 257 | + "collapsed": false, |
| 258 | + "scrolled": false |
234 | 259 | },
|
235 |
| - "outputs": [], |
236 |
| - "source": [] |
| 260 | + "outputs": [ |
| 261 | + { |
| 262 | + "name": "stdout", |
| 263 | + "output_type": "stream", |
| 264 | + "text": [ |
| 265 | + "1123456789\n", |
| 266 | + "0123456789\n", |
| 267 | + "6922345678\n", |
| 268 | + "9113456689\n", |
| 269 | + "0023456789\n", |
| 270 | + "0123456789\n", |
| 271 | + "9123456789\n", |
| 272 | + "0123456789\n", |
| 273 | + "2223456789\n", |
| 274 | + "0023456789\n", |
| 275 | + "0123456789\n", |
| 276 | + "4013345678\n", |
| 277 | + "1023456789\n", |
| 278 | + "0013456789\n", |
| 279 | + "0123456789\n", |
| 280 | + "1023456789\n", |
| 281 | + "2123456789\n", |
| 282 | + "1123456789\n", |
| 283 | + "2133456789\n", |
| 284 | + "*112345678\n" |
| 285 | + ] |
| 286 | + } |
| 287 | + ], |
| 288 | + "source": [ |
| 289 | + "for ix in text[:20]:\n", |
| 290 | + " print ix" |
| 291 | + ] |
237 | 292 | }
|
238 | 293 | ],
|
239 | 294 | "metadata": {
|
|
0 commit comments