Skip to content

Commit 36e4ec5

Browse files
committedMar 19, 2017
LSTM outputs
1 parent 30e7f55 commit 36e4ec5

File tree

1 file changed

+87
-32
lines changed

1 file changed

+87
-32
lines changed
 

‎class_17/.ipynb_checkpoints/LSTM_seq-checkpoint.ipynb

+87-32
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@
142142
},
143143
{
144144
"cell_type": "code",
145-
"execution_count": 32,
145+
"execution_count": 36,
146146
"metadata": {
147147
"collapsed": false
148148
},
@@ -154,15 +154,15 @@
154154
"_________________________________________________________________\n",
155155
"Layer (type) Output Shape Param # \n",
156156
"=================================================================\n",
157-
"lstm_4 (LSTM) (None, 200, 256) 274432 \n",
157+
"lstm_7 (LSTM) (None, 200, 256) 274432 \n",
158158
"_________________________________________________________________\n",
159-
"lstm_5 (LSTM) (None, 200, 256) 525312 \n",
159+
"lstm_8 (LSTM) (None, 200, 256) 525312 \n",
160160
"_________________________________________________________________\n",
161-
"lstm_6 (LSTM) (None, 200, 256) 525312 \n",
161+
"lstm_9 (LSTM) (None, 200, 256) 525312 \n",
162162
"_________________________________________________________________\n",
163-
"dense_2 (Dense) (None, 200, 11) 2827 \n",
163+
"dense_3 (Dense) (None, 200, 11) 2827 \n",
164164
"_________________________________________________________________\n",
165-
"activation_2 (Activation) (None, 200, 11) 0 \n",
165+
"activation_3 (Activation) (None, 200, 11) 0 \n",
166166
"=================================================================\n",
167167
"Total params: 1,327,883.0\n",
168168
"Trainable params: 1,327,883.0\n",
@@ -188,7 +188,7 @@
188188
},
189189
{
190190
"cell_type": "code",
191-
"execution_count": 35,
191+
"execution_count": 38,
192192
"metadata": {
193193
"collapsed": false
194194
},
@@ -197,43 +197,98 @@
197197
"name": "stdout",
198198
"output_type": "stream",
199199
"text": [
200-
"Epoch 1/5\n",
201-
" 384/5000 [=>............................] - ETA: 48s - loss: 0.5255\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b"
200+
"Epoch 1/1\n",
201+
"52s - loss: 0.1519\n"
202202
]
203-
},
203+
}
204+
],
205+
"source": [
206+
"hist = model.fit(x, y, batch_size=64, nb_epoch=1, verbose=2)"
207+
]
208+
},
209+
{
210+
"cell_type": "code",
211+
"execution_count": 40,
212+
"metadata": {
213+
"collapsed": false
214+
},
215+
"outputs": [
204216
{
205-
"ename": "KeyboardInterrupt",
206-
"evalue": "",
207-
"output_type": "error",
208-
"traceback": [
209-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
210-
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
211-
"\u001b[0;32m<ipython-input-35-341b5a40c57b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mhist\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnb_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
212-
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/models.pyc\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 843\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 844\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 845\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 846\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 847\u001b[0m def evaluate(self, x, y, batch_size=32, verbose=1,\n",
213-
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/engine/training.pyc\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[0mval_f\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_f\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval_ins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_ins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1484\u001b[0m \u001b[0mcallback_metrics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcallback_metrics\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1485\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 1486\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1487\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
214-
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/engine/training.pyc\u001b[0m in \u001b[0;36m_fit_loop\u001b[0;34m(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)\u001b[0m\n\u001b[1;32m 1138\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'size'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_ids\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1139\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_index\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1140\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1141\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
215-
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.pyc\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2073\u001b[0m \u001b[0msession\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_session\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2074\u001b[0m updated = session.run(self.outputs + [self.updates_op],\n\u001b[0;32m-> 2075\u001b[0;31m feed_dict=feed_dict)\n\u001b[0m\u001b[1;32m 2076\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mupdated\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2077\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
216-
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 765\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 766\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 767\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 768\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 769\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
217-
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m--> 965\u001b[0;31m feed_dict_string, options, run_metadata)\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
218-
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1013\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1014\u001b[0m return self._do_call(_run_fn, self._session, feed_dict, fetch_list,\n\u001b[0;32m-> 1015\u001b[0;31m target_list, options, run_metadata)\n\u001b[0m\u001b[1;32m 1016\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1017\u001b[0m return self._do_call(_prun_fn, self._session, handle, feed_dict,\n",
219-
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1020\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1021\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1022\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1023\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1024\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
220-
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(session, feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1002\u001b[0m return tf_session.TF_Run(session, options,\n\u001b[1;32m 1003\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1004\u001b[0;31m status, run_metadata)\n\u001b[0m\u001b[1;32m 1005\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1006\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msession\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
221-
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
217+
"name": "stdout",
218+
"output_type": "stream",
219+
"text": [
220+
"['1123456789', '0123456789', '6922345678', '9113456689', '0023456789', '0123456789', '9123456789', '0123456789', '2223456789', '0023456789', '0123456789', '4013345678', '1023456789', '0013456789', '0123456789', '1023456789', '2123456789', '1123456789', '2133456789', '*112345678', '3112456789', '0123456789', '1023556789', '0123456789', '2023456789', '0123456789', '1123456789', '0623456679', '9223456789', '0223456789', '0223456789', '5123345678', '1113456789', '0123456789', '1123456789', '1123456789', '0123456789', '0123456789', '3113456789', '0123456789', '1113456789', '1123456789', '0123456789', '1123456789', '6122345678', '2123456789', '8023445778', '0123456789', '0113456789', '5223355679', '0823455678', '1023456789', '0123456789', '1123456789', '0023456789', '0123456789', '0123456789', '8023455678', '0123456789', '0123456789', '9123456789', '3123456789', '1233456789', '0123456789', '1123456789', '8123456789', '8123455789', '1023456789', '1113456789', '0123456789', '0023456789', '0023446789', '1123456789', '1013456789', '1023456789', '0123456789', '1123456789', '0123456789', '0023456789', '1123456789', '0123456789', '*012345678', '0123456789', '0323456789', '0123456789', '1123456789', '1123456789', '1123456789', '5123345678', '1123456789', '4122345678', '2123456789', '0123456789', '1123456789', '7123345678', '8123456689', '0223456789', '1123456789', '6122345678', '9123456789', '1133456789', '3113456789', '0023456789', '3223456789', '0023456789', '5122345678', '1123556789', '1123456789', '9923456689', '2123456789', '1123456789', '2123456789', '0123456789', '1134456789', '0123456789', '0123456789', '0123456789', '0123456789', '0123456789', '9023456789', '9123456789', '1123456789', '3123456789', '0123456789', '6112345678', '0123456789', '0123456789', '1823455789']\n"
222221
]
223222
}
224223
],
225224
"source": [
226-
"hist = model.fit(x, y, batch_size=64, nb_epoch=1, verbose=2)"
225+
"import numpy\n",
226+
"def mnrnd(probs):\n",
227+
" rnd = numpy.random.random()\n",
228+
" for i in xrange(len(probs)):\n",
229+
" rnd -= probs[i]\n",
230+
" if rnd <= 0:\n",
231+
" return i\n",
232+
" return i\n",
233+
"\n",
234+
"sentences = numpy.zeros((128, n_timestamps, max_features))\n",
235+
"sentences[:, 0, 0] = 1\n",
236+
"\n",
237+
"# Start sampling char-sequences. At each iteration i the probability over\n",
238+
"# the i-th character of each sequences is computed. \n",
239+
"for i in numpy.arange(10):\n",
240+
" probs = model.predict_proba(sentences, verbose=2)[:,i,:]\n",
241+
" # Go over each sequence and sample the i-th character.\n",
242+
" for j in numpy.arange(len(sentences)):\n",
243+
" sentences[j, i+1, mnrnd(probs[j, :])] = 1\n",
244+
"sentences = [sentence[1:].nonzero()[1] for sentence in sentences]\n",
245+
"\n",
246+
"# Convert to readable text.\n",
247+
"text = []\n",
248+
"for sentence in sentences:\n",
249+
" text.append(''.join([dct[word] for word in sentence]))\n",
250+
"print text\n"
227251
]
228252
},
229253
{
230254
"cell_type": "code",
231-
"execution_count": null,
255+
"execution_count": 43,
232256
"metadata": {
233-
"collapsed": true
257+
"collapsed": false,
258+
"scrolled": false
234259
},
235-
"outputs": [],
236-
"source": []
260+
"outputs": [
261+
{
262+
"name": "stdout",
263+
"output_type": "stream",
264+
"text": [
265+
"1123456789\n",
266+
"0123456789\n",
267+
"6922345678\n",
268+
"9113456689\n",
269+
"0023456789\n",
270+
"0123456789\n",
271+
"9123456789\n",
272+
"0123456789\n",
273+
"2223456789\n",
274+
"0023456789\n",
275+
"0123456789\n",
276+
"4013345678\n",
277+
"1023456789\n",
278+
"0013456789\n",
279+
"0123456789\n",
280+
"1023456789\n",
281+
"2123456789\n",
282+
"1123456789\n",
283+
"2133456789\n",
284+
"*112345678\n"
285+
]
286+
}
287+
],
288+
"source": [
289+
"for ix in text[:20]:\n",
290+
" print ix"
291+
]
237292
}
238293
],
239294
"metadata": {

0 commit comments

Comments
 (0)