|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "metadata": { |
| 7 | + "collapsed": false |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import numpy as np\n", |
| 12 | + "import keras\n", |
| 13 | + "import tensorflow as tf\n", |
| 14 | + "tf.logging.set_verbosity(tf.logging.ERROR)" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 13, |
| 20 | + "metadata": { |
| 21 | + "collapsed": false |
| 22 | + }, |
| 23 | + "outputs": [ |
| 24 | + { |
| 25 | + "name": "stdout", |
| 26 | + "output_type": "stream", |
| 27 | + "text": [ |
| 28 | + "1000000\n" |
| 29 | + ] |
| 30 | + } |
| 31 | + ], |
| 32 | + "source": [ |
| 33 | + "x = \"0123456789\"*100000\n", |
| 34 | + "\n", |
| 35 | + "print len(x)" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": 14, |
| 41 | + "metadata": { |
| 42 | + "collapsed": true |
| 43 | + }, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "dct = ['*'] + list(set(x))\n", |
| 47 | + "max_features = len(dct)\n", |
| 48 | + "rev_dct = [(j, i) for i, j in enumerate(dct)]\n", |
| 49 | + "rev_dct = dict(rev_dct)" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": 15, |
| 55 | + "metadata": { |
| 56 | + "collapsed": false |
| 57 | + }, |
| 58 | + "outputs": [ |
| 59 | + { |
| 60 | + "name": "stdout", |
| 61 | + "output_type": "stream", |
| 62 | + "text": [ |
| 63 | + "['*', '1', '0', '3', '2', '5', '4', '7', '6', '9', '8']\n", |
| 64 | + "{'*': 0, '1': 1, '0': 2, '3': 3, '2': 4, '5': 5, '4': 6, '7': 7, '6': 8, '9': 9, '8': 10}\n" |
| 65 | + ] |
| 66 | + } |
| 67 | + ], |
| 68 | + "source": [ |
| 69 | + "print dct\n", |
| 70 | + "print rev_dct" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": 16, |
| 76 | + "metadata": { |
| 77 | + "collapsed": false |
| 78 | + }, |
| 79 | + "outputs": [], |
| 80 | + "source": [ |
| 81 | + "x = [rev_dct[ch] for ch in x]" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 17, |
| 87 | + "metadata": { |
| 88 | + "collapsed": true |
| 89 | + }, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "n_timestamps = 200\n", |
| 93 | + "x = x[:len(x)- len(x) % n_timestamps]\n", |
| 94 | + "x = np.array(x, dtype='int32').reshape((-1, n_timestamps))" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": 21, |
| 100 | + "metadata": { |
| 101 | + "collapsed": false |
| 102 | + }, |
| 103 | + "outputs": [ |
| 104 | + { |
| 105 | + "name": "stdout", |
| 106 | + "output_type": "stream", |
| 107 | + "text": [ |
| 108 | + "[ 2 1 4 3 6 5 8 7 10 9]\n" |
| 109 | + ] |
| 110 | + } |
| 111 | + ], |
| 112 | + "source": [ |
| 113 | + "print x[0][:10]" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "code", |
| 118 | + "execution_count": 22, |
| 119 | + "metadata": { |
| 120 | + "collapsed": true |
| 121 | + }, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "y = np.zeros((x.shape[0], x.shape[1], max_features), dtype='int32')\n", |
| 125 | + "for i in np.arange(x.shape[0]):\n", |
| 126 | + " for j in np.arange(x.shape[1]):\n", |
| 127 | + " y[i, j, x[i, j]] = 1" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": 24, |
| 133 | + "metadata": { |
| 134 | + "collapsed": false |
| 135 | + }, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "x = np.roll(y, 1, axis=1)\n", |
| 139 | + "x[:, 0, :] = 0\n", |
| 140 | + "x[:, 0, 0] = 1" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "code", |
| 145 | + "execution_count": 32, |
| 146 | + "metadata": { |
| 147 | + "collapsed": false |
| 148 | + }, |
| 149 | + "outputs": [ |
| 150 | + { |
| 151 | + "name": "stdout", |
| 152 | + "output_type": "stream", |
| 153 | + "text": [ |
| 154 | + "_________________________________________________________________\n", |
| 155 | + "Layer (type) Output Shape Param # \n", |
| 156 | + "=================================================================\n", |
| 157 | + "lstm_4 (LSTM) (None, 200, 256) 274432 \n", |
| 158 | + "_________________________________________________________________\n", |
| 159 | + "lstm_5 (LSTM) (None, 200, 256) 525312 \n", |
| 160 | + "_________________________________________________________________\n", |
| 161 | + "lstm_6 (LSTM) (None, 200, 256) 525312 \n", |
| 162 | + "_________________________________________________________________\n", |
| 163 | + "dense_2 (Dense) (None, 200, 11) 2827 \n", |
| 164 | + "_________________________________________________________________\n", |
| 165 | + "activation_2 (Activation) (None, 200, 11) 0 \n", |
| 166 | + "=================================================================\n", |
| 167 | + "Total params: 1,327,883.0\n", |
| 168 | + "Trainable params: 1,327,883.0\n", |
| 169 | + "Non-trainable params: 0.0\n", |
| 170 | + "_________________________________________________________________\n" |
| 171 | + ] |
| 172 | + } |
| 173 | + ], |
| 174 | + "source": [ |
| 175 | + "from keras.models import Sequential\n", |
| 176 | + "from keras.layers import Dense, Dropout, Activation, LSTM\n", |
| 177 | + "\n", |
| 178 | + "model = Sequential()\n", |
| 179 | + "model.add(LSTM(256, return_sequences=True, input_shape=(200, max_features)))\n", |
| 180 | + "model.add(LSTM(256, return_sequences=True))\n", |
| 181 | + "model.add(LSTM(256, return_sequences=True))\n", |
| 182 | + "model.add(Dense(max_features))\n", |
| 183 | + "model.add(Activation('softmax'))\n", |
| 184 | + "\n", |
| 185 | + "model.compile(loss='categorical_crossentropy', optimizer='rmsprop')\n", |
| 186 | + "model.summary()" |
| 187 | + ] |
| 188 | + }, |
| 189 | + { |
| 190 | + "cell_type": "code", |
| 191 | + "execution_count": 35, |
| 192 | + "metadata": { |
| 193 | + "collapsed": false |
| 194 | + }, |
| 195 | + "outputs": [ |
| 196 | + { |
| 197 | + "name": "stdout", |
| 198 | + "output_type": "stream", |
| 199 | + "text": [ |
| 200 | + "Epoch 1/5\n", |
| 201 | + " 384/5000 [=>............................] - ETA: 48s - loss: 0.5255\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "ename": "KeyboardInterrupt", |
| 206 | + "evalue": "", |
| 207 | + "output_type": "error", |
| 208 | + "traceback": [ |
| 209 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 210 | + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
| 211 | + "\u001b[0;32m<ipython-input-35-341b5a40c57b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mhist\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnb_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
| 212 | + "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/models.pyc\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 843\u001b[0m \u001b[0mclass_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mclass_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 844\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 845\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 846\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 847\u001b[0m def evaluate(self, x, y, batch_size=32, verbose=1,\n", |
| 213 | + "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/engine/training.pyc\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[0mval_f\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_f\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mval_ins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval_ins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1484\u001b[0m \u001b[0mcallback_metrics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcallback_metrics\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1485\u001b[0;31m initial_epoch=initial_epoch)\n\u001b[0m\u001b[1;32m 1486\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1487\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 214 | + "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/engine/training.pyc\u001b[0m in \u001b[0;36m_fit_loop\u001b[0;34m(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch)\u001b[0m\n\u001b[1;32m 1138\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'size'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_ids\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1139\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_index\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1140\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1141\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 215 | + "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.pyc\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2073\u001b[0m \u001b[0msession\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_session\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2074\u001b[0m updated = session.run(self.outputs + [self.updates_op],\n\u001b[0;32m-> 2075\u001b[0;31m feed_dict=feed_dict)\n\u001b[0m\u001b[1;32m 2076\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mupdated\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2077\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
| 216 | + "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 765\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 766\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 767\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 768\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 769\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 217 | + "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m--> 965\u001b[0;31m feed_dict_string, options, run_metadata)\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 218 | + "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1013\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1014\u001b[0m return self._do_call(_run_fn, self._session, feed_dict, fetch_list,\n\u001b[0;32m-> 1015\u001b[0;31m target_list, options, run_metadata)\n\u001b[0m\u001b[1;32m 1016\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1017\u001b[0m return self._do_call(_prun_fn, self._session, handle, feed_dict,\n", |
| 219 | + "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1020\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1021\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1022\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1023\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1024\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 220 | + "\u001b[0;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(session, feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1002\u001b[0m return tf_session.TF_Run(session, options,\n\u001b[1;32m 1003\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1004\u001b[0;31m status, run_metadata)\n\u001b[0m\u001b[1;32m 1005\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1006\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_prun_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msession\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetch_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 221 | + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " |
| 222 | + ] |
| 223 | + } |
| 224 | + ], |
| 225 | + "source": [ |
| 226 | + "hist = model.fit(x, y, batch_size=64, nb_epoch=1, verbose=2)" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": null, |
| 232 | + "metadata": { |
| 233 | + "collapsed": true |
| 234 | + }, |
| 235 | + "outputs": [], |
| 236 | + "source": [] |
| 237 | + } |
| 238 | + ], |
| 239 | + "metadata": { |
| 240 | + "kernelspec": { |
| 241 | + "display_name": "Python 2", |
| 242 | + "language": "python", |
| 243 | + "name": "python2" |
| 244 | + }, |
| 245 | + "language_info": { |
| 246 | + "codemirror_mode": { |
| 247 | + "name": "ipython", |
| 248 | + "version": 2 |
| 249 | + }, |
| 250 | + "file_extension": ".py", |
| 251 | + "mimetype": "text/x-python", |
| 252 | + "name": "python", |
| 253 | + "nbconvert_exporter": "python", |
| 254 | + "pygments_lexer": "ipython2", |
| 255 | + "version": "2.7.12" |
| 256 | + } |
| 257 | + }, |
| 258 | + "nbformat": 4, |
| 259 | + "nbformat_minor": 2 |
| 260 | +} |
0 commit comments