redjet is a high-performance Go library for Redis. Its hallmark feature is a low-allocation, streaming API. See the benchmarks section for more details.
Unlike redigo and go-redis, redjet does not provide a function for every Redis command. Instead, it offers a generic interface that supports all commands and options. While this approach has less type-safety, it provides forward compatibility with new Redis features.
In the aim of both performance and ease-of-use, redjet attempts to provide
an API that closely resembles the protocol. For example, the Command
method
is really a Pipeline of size 1.
Table of Contents
Install:
go get github.com/coder/redjet@latest
For the most part, you can interact with Redis using a familiar interface:
package main
import (
"context"
"fmt"
"log"
"github.com/coder/redjet"
)
func main() {
client := redjet.New("localhost:6379")
ctx := context.Background()
err := client.Command(ctx, "SET", "foo", "bar").Ok()
// check error
got, err := client.Command(ctx, "GET", "foo").Bytes()
// check error
// got == []byte("bar")
}
To minimize allocations, call (*Pipeline).WriteTo
instead of (*Pipeline).Bytes
.
WriteTo
streams the response directly to an io.Writer
such as a file or HTTP response.
For example:
_, err := client.Command(ctx, "GET", "big-object").WriteTo(os.Stdout)
// check error
Similarly, you can pass in a value that implements redjet.LenReader
to
Command
to stream larger values into Redis. Unfortunately, the API
cannot accept a regular io.Reader
because bulk string messages in
the Redis protocol are length-prefixed.
Here's an example of streaming a large file into Redis:
bigFile, err := os.Open("bigfile.txt")
// check error
defer bigFile.Close()
stat, err := bigFile.Stat()
// check error
err = client.Command(
ctx, "SET", "bigfile",
redjet.NewLenReader(bigFile, stat.Size()),
).Ok()
// check error
If you have no way of knowing the size of your blob in advance and still
want to avoid large allocations, you may chunk a stream into Redis using repeated APPEND
commands.
redjet
supports pipelining via the (*Client).Pipeline
method. This method accepts a Pipeline
, potentially that of a previous, open command.
// Set foo0, foo1, ..., foo99 to "bar", and confirm that each succeeded.
//
// This entire example only takes one round-trip to Redis!
var p *Pipeline
for i := 0; i < 100; i++ {
p = client.Pipeline(p, "SET", fmt.Sprintf("foo%d", i), "bar")
}
for r.Next() {
if err := p.Ok(); err != nil {
log.Fatal(err)
}
}
p.Close() // allow the underlying connection to be reused.
redjet suports PubSub via the NextSubMessage
method. For example:
// Subscribe to a channel
sub := client.Command(ctx, "SUBSCRIBE", "my-channel")
sub.NextSubMessage() // ignore the first message, which is a confirmation of the subscription
// Publish a message to the channel
n, err := client.Command(ctx, "PUBLISH", "my-channel", "hello world").Int()
// check error
// n == 1, since there is one subscriber
// Receive the message
sub.NextSubMessage()
// sub.Payload == "hello world"
// sub.Channel == "my-channel"
// sub.Type == "message"
Note that NextSubMessage
will block until a message is received. To interrupt the subscription, cancel the context passed to Command
.
Once a connection enters subscribe mode, the internal pool does not re-use it.
It is possible to subscribe to a channel in a performant, low-allocation way via the public API. NextSubMessage is just a convenience method.
redjet
supports convenient JSON encoding and decoding via the (*Pipeline).JSON
method. For example:
type Person struct {
Name string `json:"name"`
Age int `json:"age"`
}
// Set a person
// Unknown argument types are automatically encoded to JSON.
err := client.Command(ctx, "SET", "person", Person{
Name: "Alice",
Age: 30,
}).Ok()
// check error
// Get a person
var p Person
client.Command(ctx, "GET", "person").JSON(&p)
// check error
// p == Person{Name: "Alice", Age: 30}
Redjet provides automatic connection pooling. Configuration knobs exist
within the Client
struct that may be changed before any Commands are
issued.
If you want synchronous command execution over the same connection,
use the Pipeline
method and consume the Pipeline after each call to Pipeline
. Storing a long-lived Pipeline
offers the same functionality as storing a long-lived connection.
On a pure throughput basis, redjet will perform similarly to redigo and go-redis. But, since redjet doesn't allocate memory for the entire response object, it consumes far less resources when handling large responses.
Here are some benchmarks (reproducible via make gen-bench
) to illustrate:
.fullname: Get/1_B-10
│ redjet │ redigo │ go-redis │ rueidis │
│ sec/op │ sec/op vs base │ sec/op vs base │ sec/op vs base │
908.2n ± 2% 962.4n ± 1% +5.97% (p=0.000 n=10) 913.8n ± 3% ~ (p=0.280 n=10) 1045.0n ± 1% +15.06% (p=0.000 n=10)
│ redjet │ redigo │ go-redis │ rueidis │
│ B/s │ B/s vs base │ B/s vs base │ B/s vs base │
1074.2Ki ± 2% 1015.6Ki ± 1% -5.45% (p=0.000 n=10) 1069.3Ki ± 2% ~ (p=0.413 n=10) 937.5Ki ± 1% -12.73% (p=0.000 n=10)
│ redjet │ redigo │ go-redis │ rueidis │
│ B/op │ B/op vs base │ B/op vs base │ B/op vs base │
0.00 ± 0% 41.00 ± 0% ? (p=0.000 n=10) 275.50 ± 2% ? (p=0.000 n=10) 249.00 ± 0% ? (p=0.000 n=10)
│ redjet │ redigo │ go-redis │ rueidis │
│ allocs/op │ allocs/op vs base │ allocs/op vs base │ allocs/op vs base │
0.000 ± 0% 3.000 ± 0% ? (p=0.000 n=10) 4.000 ± 0% ? (p=0.000 n=10) 2.000 ± 0% ? (p=0.000 n=10)
.fullname: Get/1.0_kB-10
│ redjet │ redigo │ go-redis │ rueidis │
│ sec/op │ sec/op vs base │ sec/op vs base │ sec/op vs base │
1.302µ ± 2% 1.802µ ± 1% +38.42% (p=0.000 n=10) 1.713µ ± 3% +31.58% (p=0.000 n=10) 1.645µ ± 1% +26.35% (p=0.000 n=10)
│ redjet │ redigo │ go-redis │ rueidis │
│ B/s │ B/s vs base │ B/s vs base │ B/s vs base │
750.4Mi ± 2% 542.1Mi ± 1% -27.76% (p=0.000 n=10) 570.3Mi ± 3% -24.01% (p=0.000 n=10) 593.8Mi ± 1% -20.87% (p=0.000 n=10)
│ redjet │ redigo │ go-redis │ rueidis │
│ B/op │ B/op vs base │ B/op vs base │ B/op vs base │
0.000Ki ± 0% 1.039Ki ± 0% ? (p=0.000 n=10) 1.392Ki ± 0% ? (p=0.000 n=10) 1.248Ki ± 1% ? (p=0.000 n=10)
│ redjet │ redigo │ go-redis │ rueidis │
│ allocs/op │ allocs/op vs base │ allocs/op vs base │ allocs/op vs base │
0.000 ± 0% 3.000 ± 0% ? (p=0.000 n=10) 4.000 ± 0% ? (p=0.000 n=10) 2.000 ± 0% ? (p=0.000 n=10)
.fullname: Get/1.0_MB-10
│ redjet │ redigo │ go-redis │ rueidis │
│ sec/op │ sec/op vs base │ sec/op vs base │ sec/op vs base │
472.5µ ± 7% 477.3µ ± 2% ~ (p=0.190 n=10) 536.8µ ± 6% +13.61% (p=0.000 n=10) 475.3µ ± 6% ~ (p=0.684 n=10)
│ redjet │ redigo │ go-redis │ rueidis │
│ B/s │ B/s vs base │ B/s vs base │ B/s vs base │
2.067Gi ± 8% 2.046Gi ± 2% ~ (p=0.190 n=10) 1.819Gi ± 6% -11.98% (p=0.000 n=10) 2.055Gi ± 6% ~ (p=0.684 n=10)
│ redjet │ redigo │ go-redis │ rueidis │
│ B/op │ B/op vs base │ B/op vs base │ B/op vs base │
51.00 ± 12% 1047849.50 ± 0% +2054506.86% (p=0.000 n=10) 1057005.00 ± 0% +2072458.82% (p=0.000 n=10) 1048808.50 ± 0% +2056387.25% (p=0.000 n=10)
│ redjet │ redigo │ go-redis │ rueidis │
│ allocs/op │ allocs/op vs base │ allocs/op vs base │ allocs/op vs base │
1.000 ± 0% 3.000 ± 0% +200.00% (p=0.000 n=10) 4.000 ± 0% +300.00% (p=0.000 n=10) 2.000 ± 0% +100.00% (p=0.000 n=10)
- redjet does not have convenient support for client side caching. But, the redjet API is flexible enough that a client could implement it themselves by following the instructions here.
- RESP3 is not supported. Practically, this means that connections aren't multiplexed, and other Redis libraries may perform better in high-concurrency scenarios.
- Certain features have not been tested but may still work:
- Redis Streams
- Monitor