Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 5, 2025

📄 36% (0.36x) speedup for AltairPlot.create_legend in gradio/components/plot.py

⏱️ Runtime : 55.5 microseconds 40.7 microseconds (best of 78 runs)

📝 Explanation and details

The optimization achieves a 36% speedup by eliminating unnecessary intermediate variable assignments and dictionary operations.

Key optimizations:

  1. Early returns: Instead of assigning to a legend variable and returning it at the end, the optimized version returns immediately from each branch, reducing variable management overhead.

  2. Eliminated unnecessary dictionary creation: The original code created an intermediate dictionary {"orient": position} when position was truthy, then unpacked it with **position. The optimized version directly creates the final dictionary {"title": title, "orient": position}.

  3. Removed conditional expression: The original used a ternary operator {"orient": position} if position else {} which created an empty dictionary for falsy positions, only to be unpacked. The optimized version handles falsy positions with a separate early return.

  4. Reduced variable assignments: The optimized code eliminates the intermediate legend variable entirely.

Performance impact by test case type:

  • Falsy positions (empty string, None, False, 0): 23-55% faster due to early returns avoiding dictionary operations
  • "none" position: 1-9% faster from eliminating the final variable assignment
  • Truthy positions: 28-49% faster by avoiding intermediate dictionary creation and unpacking

The optimization is particularly effective for cases with falsy positions and complex data types (lists, dicts, objects) where the eliminated dictionary operations provide the most benefit. All test cases show improvement, indicating the optimizations benefit the full range of expected inputs.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 66 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
from __future__ import annotations

# imports
import pytest  # used for our unit tests
from gradio.components.plot import AltairPlot

# unit tests

# 1. Basic Test Cases

def test_position_none_returns_none():
    # When position is "none", legend should be None regardless of title
    codeflash_output = AltairPlot.create_legend("none", "Legend Title") # 401ns -> 395ns (1.52% faster)
    codeflash_output = AltairPlot.create_legend("none", "") # 198ns -> 190ns (4.21% faster)
    codeflash_output = AltairPlot.create_legend("none", None) # 139ns -> 127ns (9.45% faster)

def test_position_valid_string_returns_dict_with_orient_and_title():
    # When position is a valid string, legend should be a dict with 'title' and 'orient'
    codeflash_output = AltairPlot.create_legend("top", "My Legend"); legend = codeflash_output # 856ns -> 593ns (44.4% faster)

def test_position_empty_string_returns_dict_with_title_only():
    # When position is empty string, legend should be a dict with only 'title'
    codeflash_output = AltairPlot.create_legend("", "Title Only"); legend = codeflash_output # 772ns -> 503ns (53.5% faster)

def test_title_none_is_allowed():
    # Title can be None, should be present in the dict
    codeflash_output = AltairPlot.create_legend("bottom", None); legend = codeflash_output # 876ns -> 609ns (43.8% faster)

def test_title_empty_string_is_allowed():
    # Title can be empty string, should be present in the dict
    codeflash_output = AltairPlot.create_legend("left", ""); legend = codeflash_output # 903ns -> 654ns (38.1% faster)

# 2. Edge Test Cases

def test_position_is_none_returns_dict_with_title_only():
    # If position is None, should return dict with only 'title'
    codeflash_output = AltairPlot.create_legend(None, "Edge Title"); legend = codeflash_output # 818ns -> 599ns (36.6% faster)

def test_position_is_whitespace_string():
    # Whitespace string as position should be treated as not None/"none"
    codeflash_output = AltairPlot.create_legend(" ", "Whitespace"); legend = codeflash_output # 855ns -> 625ns (36.8% faster)

def test_position_is_integer():
    # Position as integer should be treated as not None/"none"
    codeflash_output = AltairPlot.create_legend(123, "Int Position"); legend = codeflash_output # 959ns -> 673ns (42.5% faster)

def test_position_is_boolean():
    # Position as boolean should be treated as not None/"none"
    codeflash_output = AltairPlot.create_legend(True, "Bool Position"); legend = codeflash_output # 903ns -> 657ns (37.4% faster)

def test_title_is_integer():
    # Title as integer should be allowed
    codeflash_output = AltairPlot.create_legend("right", 42); legend = codeflash_output # 867ns -> 586ns (48.0% faster)

def test_title_is_boolean():
    # Title as boolean should be allowed
    codeflash_output = AltairPlot.create_legend("bottom", False); legend = codeflash_output # 876ns -> 633ns (38.4% faster)

def test_position_is_dict():
    # Position as dict should be treated as not None/"none", but dict as orient
    codeflash_output = AltairPlot.create_legend({"custom": "pos"}, "Dict Position"); legend = codeflash_output # 1.08μs -> 759ns (42.4% faster)

def test_position_is_list():
    # Position as list should be treated as not None/"none"
    codeflash_output = AltairPlot.create_legend([1, 2, 3], "List Position"); legend = codeflash_output # 1.00μs -> 722ns (39.2% faster)

def test_title_is_list():
    # Title as list should be allowed
    codeflash_output = AltairPlot.create_legend("top", ["A", "B"]); legend = codeflash_output # 850ns -> 615ns (38.2% faster)

def test_position_is_empty_dict():
    # Position as empty dict should be treated as not None/"none"
    codeflash_output = AltairPlot.create_legend({}, "Empty Dict Position"); legend = codeflash_output # 938ns -> 690ns (35.9% faster)

def test_position_is_zero():
    # Position as zero should be treated as not None/"none"
    codeflash_output = AltairPlot.create_legend(0, "Zero Position"); legend = codeflash_output # 866ns -> 634ns (36.6% faster)

def test_position_is_false():
    # Position as False should be treated as not None/"none"
    codeflash_output = AltairPlot.create_legend(False, "False Position"); legend = codeflash_output # 828ns -> 606ns (36.6% faster)

def test_title_is_empty_dict():
    # Title as empty dict should be allowed
    codeflash_output = AltairPlot.create_legend("top", {}); legend = codeflash_output # 854ns -> 643ns (32.8% faster)

def test_title_is_none_when_position_none():
    # Title is None and position is None
    codeflash_output = AltairPlot.create_legend(None, None); legend = codeflash_output # 820ns -> 621ns (32.0% faster)

# 3. Large Scale Test Cases

def test_large_scale_position_list():
    # Large list as position, should be handled correctly
    large_list = list(range(1000))
    codeflash_output = AltairPlot.create_legend(large_list, "Large List Position"); legend = codeflash_output # 1.01μs -> 715ns (42.0% faster)

def test_large_scale_title_list():
    # Large list as title, should be allowed
    large_title = ["item"] * 1000
    codeflash_output = AltairPlot.create_legend("top", large_title); legend = codeflash_output # 857ns -> 649ns (32.0% faster)

def test_large_scale_position_string():
    # Large string as position
    large_str = "a" * 1000
    codeflash_output = AltairPlot.create_legend(large_str, "Large String Position"); legend = codeflash_output # 868ns -> 641ns (35.4% faster)

def test_large_scale_title_string():
    # Large string as title
    large_title = "b" * 1000
    codeflash_output = AltairPlot.create_legend("bottom", large_title); legend = codeflash_output # 880ns -> 618ns (42.4% faster)

def test_large_scale_position_none_title_large():
    # Position None, title large
    large_title = "x" * 1000
    codeflash_output = AltairPlot.create_legend(None, large_title); legend = codeflash_output # 831ns -> 614ns (35.3% faster)

def test_large_scale_position_none_title_empty():
    # Position None, title empty
    codeflash_output = AltairPlot.create_legend(None, ""); legend = codeflash_output # 826ns -> 597ns (38.4% faster)

def test_large_scale_position_none_title_none():
    # Position None, title None
    codeflash_output = AltairPlot.create_legend(None, None); legend = codeflash_output # 834ns -> 585ns (42.6% faster)

def test_large_scale_position_none_title_list():
    # Position None, title large list
    large_list = list(range(1000))
    codeflash_output = AltairPlot.create_legend(None, large_list); legend = codeflash_output # 835ns -> 540ns (54.6% faster)

def test_large_scale_position_none_title_dict():
    # Position None, title large dict
    large_dict = {str(i): i for i in range(1000)}
    codeflash_output = AltairPlot.create_legend(None, large_dict); legend = codeflash_output # 810ns -> 589ns (37.5% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import pytest  # used for our unit tests
from gradio.components.plot import AltairPlot

# unit tests

# 1. Basic Test Cases

def test_none_position_returns_none():
    # Should return None if position is "none"
    codeflash_output = AltairPlot.create_legend("none", "Legend Title") # 442ns -> 427ns (3.51% faster)

def test_valid_position_and_title():
    # Should return dict with title and orient if position is a valid string
    codeflash_output = AltairPlot.create_legend("top", "My Legend"); result = codeflash_output # 802ns -> 586ns (36.9% faster)

def test_empty_position_returns_title_only():
    # Should return dict with only title if position is empty string
    codeflash_output = AltairPlot.create_legend("", "Title Only"); result = codeflash_output # 766ns -> 507ns (51.1% faster)

def test_none_position_returns_title_only():
    # Should return dict with only title if position is None
    codeflash_output = AltairPlot.create_legend(None, "Legend Title"); result = codeflash_output # 837ns -> 597ns (40.2% faster)

def test_numeric_position():
    # Should treat numeric positions as orient values
    codeflash_output = AltairPlot.create_legend(123, "Numeric Legend"); result = codeflash_output # 949ns -> 738ns (28.6% faster)

def test_boolean_position():
    # Should treat boolean positions as orient values
    codeflash_output = AltairPlot.create_legend(True, "Boolean Legend"); result = codeflash_output # 900ns -> 638ns (41.1% faster)

def test_empty_title():
    # Should handle empty title string
    codeflash_output = AltairPlot.create_legend("left", ""); result = codeflash_output # 839ns -> 650ns (29.1% faster)

def test_none_title():
    # Should handle None as title
    codeflash_output = AltairPlot.create_legend("bottom", None); result = codeflash_output # 844ns -> 599ns (40.9% faster)

def test_title_is_integer():
    # Should handle integer as title
    codeflash_output = AltairPlot.create_legend("right", 42); result = codeflash_output # 794ns -> 609ns (30.4% faster)

# 2. Edge Test Cases

def test_position_is_empty_list():
    # Should treat empty list as falsy, returning only title
    codeflash_output = AltairPlot.create_legend([], "List Legend"); result = codeflash_output # 821ns -> 601ns (36.6% faster)

def test_position_is_nonempty_list():
    # Should treat nonempty list as orient value
    pos = [1, 2, 3]
    codeflash_output = AltairPlot.create_legend(pos, "List Legend"); result = codeflash_output # 1.01μs -> 708ns (42.7% faster)

def test_position_is_dict():
    # Should treat dict as orient value
    pos = {"foo": "bar"}
    codeflash_output = AltairPlot.create_legend(pos, "Dict Legend"); result = codeflash_output # 1.08μs -> 781ns (38.5% faster)

def test_position_is_false():
    # Should treat False as falsy, returning only title
    codeflash_output = AltairPlot.create_legend(False, "False Legend"); result = codeflash_output # 793ns -> 591ns (34.2% faster)

def test_position_is_zero():
    # Should treat 0 as falsy, returning only title
    codeflash_output = AltairPlot.create_legend(0, "Zero Legend"); result = codeflash_output # 829ns -> 673ns (23.2% faster)

def test_position_is_none_and_title_is_none():
    # Both position and title are None
    codeflash_output = AltairPlot.create_legend(None, None); result = codeflash_output # 798ns -> 592ns (34.8% faster)

def test_position_is_none_and_title_is_empty_string():
    # Both position is None and title is empty string
    codeflash_output = AltairPlot.create_legend(None, ""); result = codeflash_output # 833ns -> 611ns (36.3% faster)

def test_position_is_none_and_title_is_false():
    # Both position is None and title is False
    codeflash_output = AltairPlot.create_legend(None, False); result = codeflash_output # 802ns -> 620ns (29.4% faster)

def test_position_is_none_and_title_is_zero():
    # Both position is None and title is 0
    codeflash_output = AltairPlot.create_legend(None, 0); result = codeflash_output # 846ns -> 644ns (31.4% faster)

def test_position_is_unusual_string():
    # Should treat any string except "none" as orient value
    codeflash_output = AltairPlot.create_legend("foobar", "Unusual Legend"); result = codeflash_output # 890ns -> 596ns (49.3% faster)

def test_position_is_whitespace_string():
    # Should treat whitespace string as orient value
    codeflash_output = AltairPlot.create_legend("   ", "Whitespace Legend"); result = codeflash_output # 855ns -> 590ns (44.9% faster)

def test_position_is_special_characters():
    # Should treat special characters as orient value
    codeflash_output = AltairPlot.create_legend("@#$%^&*", "Special Legend"); result = codeflash_output # 844ns -> 589ns (43.3% faster)

def test_position_is_tuple():
    # Should treat tuple as orient value
    pos = (1, 2)
    codeflash_output = AltairPlot.create_legend(pos, "Tuple Legend"); result = codeflash_output # 1.02μs -> 745ns (36.8% faster)

def test_position_is_set():
    # Should treat set as orient value
    pos = {1, 2}
    codeflash_output = AltairPlot.create_legend(pos, "Set Legend"); result = codeflash_output # 991ns -> 753ns (31.6% faster)

def test_position_is_object():
    # Should treat object as orient value
    class Dummy: pass
    dummy = Dummy()
    codeflash_output = AltairPlot.create_legend(dummy, "Object Legend"); result = codeflash_output # 914ns -> 720ns (26.9% faster)

def test_position_is_none_and_title_is_object():
    # Should handle object as title
    class Dummy: pass
    dummy = Dummy()
    codeflash_output = AltairPlot.create_legend(None, dummy); result = codeflash_output # 777ns -> 565ns (37.5% faster)

def test_position_is_none_and_title_is_list():
    # Should handle list as title
    title = [1,2,3]
    codeflash_output = AltairPlot.create_legend(None, title); result = codeflash_output # 782ns -> 575ns (36.0% faster)

def test_position_is_none_and_title_is_dict():
    # Should handle dict as title
    title = {"foo": "bar"}
    codeflash_output = AltairPlot.create_legend(None, title); result = codeflash_output # 758ns -> 596ns (27.2% faster)

# 3. Large Scale Test Cases

def test_large_title_string():
    # Should handle large title string
    large_title = "A" * 1000
    codeflash_output = AltairPlot.create_legend("right", large_title); result = codeflash_output # 835ns -> 608ns (37.3% faster)

def test_large_list_position():
    # Should handle large list as position
    large_list = list(range(1000))
    codeflash_output = AltairPlot.create_legend(large_list, "Large List Legend"); result = codeflash_output # 1.06μs -> 712ns (48.6% faster)

def test_large_dict_title():
    # Should handle large dict as title
    large_dict = {str(i): i for i in range(1000)}
    codeflash_output = AltairPlot.create_legend("bottom", large_dict); result = codeflash_output # 896ns -> 672ns (33.3% faster)

def test_large_tuple_position():
    # Should handle large tuple as position
    large_tuple = tuple(range(1000))
    codeflash_output = AltairPlot.create_legend(large_tuple, "Large Tuple Legend"); result = codeflash_output # 1.04μs -> 746ns (39.4% faster)

def test_large_set_position():
    # Should handle large set as position
    large_set = set(range(1000))
    codeflash_output = AltairPlot.create_legend(large_set, "Large Set Legend"); result = codeflash_output # 1.04μs -> 750ns (39.1% faster)

def test_large_object_title():
    # Should handle large object as title
    class LargeObject:
        def __init__(self):
            self.data = [i for i in range(1000)]
    obj = LargeObject()
    codeflash_output = AltairPlot.create_legend("left", obj); result = codeflash_output # 874ns -> 664ns (31.6% faster)

def test_large_object_position():
    # Should handle large object as position
    class LargeObject:
        def __init__(self):
            self.data = [i for i in range(1000)]
    obj = LargeObject()
    codeflash_output = AltairPlot.create_legend(obj, "Large Object Legend"); result = codeflash_output # 919ns -> 677ns (35.7% faster)

def test_large_none_title_and_position():
    # Should handle None for both title and position, even with large data elsewhere
    codeflash_output = AltairPlot.create_legend(None, None); result = codeflash_output # 800ns -> 645ns (24.0% faster)

def test_large_none_position_and_large_list_title():
    # Should handle None position and large list as title
    large_list = list(range(1000))
    codeflash_output = AltairPlot.create_legend(None, large_list); result = codeflash_output # 827ns -> 634ns (30.4% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-AltairPlot.create_legend-mhlallqh and push.

Codeflash Static Badge

The optimization achieves a 36% speedup by eliminating unnecessary intermediate variable assignments and dictionary operations. 

**Key optimizations:**

1. **Early returns**: Instead of assigning to a `legend` variable and returning it at the end, the optimized version returns immediately from each branch, reducing variable management overhead.

2. **Eliminated unnecessary dictionary creation**: The original code created an intermediate dictionary `{"orient": position}` when `position` was truthy, then unpacked it with `**position`. The optimized version directly creates the final dictionary `{"title": title, "orient": position}`.

3. **Removed conditional expression**: The original used a ternary operator `{"orient": position} if position else {}` which created an empty dictionary for falsy positions, only to be unpacked. The optimized version handles falsy positions with a separate early return.

4. **Reduced variable assignments**: The optimized code eliminates the intermediate `legend` variable entirely.

**Performance impact by test case type:**
- **Falsy positions** (empty string, None, False, 0): 23-55% faster due to early returns avoiding dictionary operations
- **"none" position**: 1-9% faster from eliminating the final variable assignment  
- **Truthy positions**: 28-49% faster by avoiding intermediate dictionary creation and unpacking

The optimization is particularly effective for cases with falsy positions and complex data types (lists, dicts, objects) where the eliminated dictionary operations provide the most benefit. All test cases show improvement, indicating the optimizations benefit the full range of expected inputs.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 5, 2025 01:01
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Nov 5, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant