Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 28, 2025

📄 17% (0.17x) speedup for get_image in gradio/media.py

⏱️ Runtime : 311 microseconds 266 microseconds (best of 5 runs)

📝 Explanation and details

The optimization replaces list(media_dir.glob("*")) with tuple(media_dir.iterdir()) when selecting random files from a directory. This change delivers a 16% speedup by leveraging two key improvements:

What changed:

  • glob("*")iterdir(): More direct filesystem iteration without pattern matching overhead
  • list()tuple(): Slightly more memory-efficient collection for immutable data

Why it's faster:

  • iterdir() is a simpler filesystem operation that directly lists directory contents, while glob() adds pattern matching overhead even for the simple "*" pattern
  • tuple() has lower memory allocation overhead than list() when the collection won't be modified

Performance impact by test case:

  • Random file selection cases show 40-49% improvements (the primary bottleneck)
  • Specific filename cases show minimal impact (~1-5%) since they bypass this code path
  • Large-scale tests (500-1000 files) benefit most, demonstrating the optimization scales well with directory size

The line profiler confirms the optimization target: the glob() line dropped from 200,962ns to 93,611ns (53% reduction), making it the single largest performance gain in the function.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 47 Passed
🌀 Generated Regression Tests 9 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 86.7%
⚙️ Existing Unit Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
components/test_image.py::TestImage.test_component_functions 14.5μs 19.0μs -23.6%⚠️
test_processing_utils.py::TestTempFileManagement.test_hash_file 28.0μs 27.6μs 1.55%✅
test_processing_utils.py::TestTempFileManagement.test_make_temp_copy_if_needed 21.5μs 21.1μs 1.56%✅
🌀 Generated Regression Tests and Runtime
import os
# function to test
import random
import shutil
import sys
import tempfile
# Patch MEDIA_ROOT for testing without touching real files
import types
from pathlib import Path

# imports
import pytest
from gradio.media import get_image

# --- Unit tests ---

@pytest.fixture(scope="function")
def temp_media_root(tmp_path, monkeypatch):
    """
    Fixture to create a temporary MEDIA_ROOT with images/ subdir and test files.
    """
    # Create media_root/images
    media_root = tmp_path / "media_assets"
    images_dir = media_root / "images"
    images_dir.mkdir(parents=True)
    # Patch MEDIA_ROOT in the module namespace
    monkeypatch.setattr(sys.modules[__name__], "MEDIA_ROOT", media_root)
    return images_dir

# -------------------- BASIC TEST CASES --------------------















#------------------------------------------------
import os
# function to test
import random
import shutil
from pathlib import Path
from typing import Optional

# imports
import pytest
from gradio.media import get_image

MEDIA_ROOT = Path(__file__).parent / "media_assets"
from gradio.media import get_image

# unit tests

@pytest.fixture(scope="module")
def setup_media(tmp_path_factory):
    """
    Fixture to setup and teardown a test media directory structure.
    """
    tmp_media_root = tmp_path_factory.mktemp("media_assets")
    images_dir = tmp_media_root / "images"
    images_dir.mkdir(parents=True)
    # Create some test image files
    img1 = images_dir / "tower.jpg"
    img1.write_text("test image 1")
    img2 = images_dir / "castle.png"
    img2.write_text("test image 2")
    img3 = images_dir / "forest.bmp"
    img3.write_text("test image 3")
    # Empty directory for edge case
    empty_dir = tmp_media_root / "empty_images"
    empty_dir.mkdir()
    # Patch MEDIA_ROOT for the duration of the tests
    global MEDIA_ROOT
    old_media_root = MEDIA_ROOT
    MEDIA_ROOT = tmp_media_root
    yield {
        "media_root": tmp_media_root,
        "images_dir": images_dir,
        "img1": img1,
        "img2": img2,
        "img3": img3,
        "empty_dir": empty_dir,
    }
    MEDIA_ROOT = old_media_root
    # Clean up
    shutil.rmtree(tmp_media_root)

# ----------- Basic Test Cases -----------

def test_get_image_specific_filename(setup_media):
    # Should return absolute path to tower.jpg
    codeflash_output = get_image("tower.jpg"); result = codeflash_output # 17.7μs -> 17.9μs (1.00% slower)


def test_get_image_random(setup_media):
    # Should return absolute path to one of the images in the directory
    codeflash_output = get_image(); result = codeflash_output # 51.7μs -> 36.9μs (40.2% faster)
    images = [str(setup_media["img1"].absolute()), str(setup_media["img2"].absolute()), str(setup_media["img3"].absolute())]


def test_get_image_nonexistent_file(setup_media):
    # Should raise FileNotFoundError for missing file
    with pytest.raises(FileNotFoundError):
        get_image("nonexistent.jpg") # 19.5μs -> 19.8μs (1.46% slower)




def test_get_image_filename_with_http_scheme(setup_media):
    # Should return the http URL unchanged
    url = "http://example.com/image.png"
    codeflash_output = get_image(url); result = codeflash_output # 10.9μs -> 10.4μs (4.98% faster)

def test_get_image_filename_with_https_scheme(setup_media):
    # Should return the https URL unchanged
    url = "https://example.com/image.png"
    codeflash_output = get_image(url); result = codeflash_output # 10.7μs -> 10.6μs (1.85% faster)


def test_get_image_large_number_of_files(setup_media):
    # Create a large number of image files and test random selection
    images_dir = setup_media["images_dir"]
    large_num = 500
    files = []
    for i in range(large_num):
        f = images_dir / f"img_{i}.jpg"
        f.write_text(f"image {i}")
        files.append(str(f.absolute()))
    # Should return one of the large number of files
    codeflash_output = get_image(); result = codeflash_output # 52.4μs -> 35.1μs (49.3% faster)

def test_get_image_performance_large_scale(setup_media):
    # Should not be slow with 1000 files
    images_dir = setup_media["images_dir"]
    for i in range(1000):
        (images_dir / f"big_{i}.jpg").write_text("big file")
    # Try getting a random image
    codeflash_output = get_image(); result = codeflash_output # 53.1μs -> 37.1μs (43.0% faster)

To edit these changes git checkout codeflash/optimize-get_image-mhapnsbt and push.

Codeflash

The optimization replaces `list(media_dir.glob("*"))` with `tuple(media_dir.iterdir())` when selecting random files from a directory. This change delivers a **16% speedup** by leveraging two key improvements:

**What changed:**
- `glob("*")` → `iterdir()`: More direct filesystem iteration without pattern matching overhead
- `list()` → `tuple()`: Slightly more memory-efficient collection for immutable data

**Why it's faster:**
- `iterdir()` is a simpler filesystem operation that directly lists directory contents, while `glob()` adds pattern matching overhead even for the simple "*" pattern
- `tuple()` has lower memory allocation overhead than `list()` when the collection won't be modified

**Performance impact by test case:**
- Random file selection cases show **40-49% improvements** (the primary bottleneck)
- Specific filename cases show minimal impact (~1-5%) since they bypass this code path
- Large-scale tests (500-1000 files) benefit most, demonstrating the optimization scales well with directory size

The line profiler confirms the optimization target: the `glob()` line dropped from 200,962ns to 93,611ns (53% reduction), making it the single largest performance gain in the function.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 28, 2025 15:18
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Oct 28, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant