Skip to content
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion Configuration/ProcessModifiers/python/allSonicTriton_cff.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
from Configuration.ProcessModifiers.particleNetPTSonicTriton_cff import particleNetPTSonicTriton
from Configuration.ProcessModifiers.deepMETSonicTriton_cff import deepMETSonicTriton
from Configuration.ProcessModifiers.deepTauSonicTriton_cff import deepTauSonicTriton
from Configuration.ProcessModifiers.particleTransformerAK4SonicTriton_cff import particleTransformerAK4SonicTriton

# collect all SonicTriton-related process modifiers here
allSonicTriton = cms.ModifierChain(enableSonicTriton,deepMETSonicTriton,particleNetSonicTriton,deepTauSonicTriton)
allSonicTriton = cms.ModifierChain(enableSonicTriton,deepMETSonicTriton,particleNetSonicTriton,particleNetPTSonicTriton,deepTauSonicTriton,particleTransformerAK4SonicTriton)

Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
import FWCore.ParameterSet.Config as cms

particleTransformerAK4SonicTriton = cms.Modifier()
1 change: 1 addition & 0 deletions RecoBTag/ONNXRuntime/BuildFile.xml
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
<use name="PhysicsTools/ONNXRuntime"/>
<use name="DataFormats/BTauReco"/>
<export>
<lib name="1"/>
Expand Down
34 changes: 34 additions & 0 deletions RecoBTag/ONNXRuntime/interface/tensor_configs.h
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
#ifndef RecoBTag_ONNXRuntime_tensor_configs_h
#define RecoBTag_ONNXRuntime_tensor_configs_h

#include <map>
namespace deepflavour {

constexpr unsigned n_features_global = 15;
Expand Down Expand Up @@ -28,4 +29,37 @@ namespace deepvertex {

} // namespace deepvertex

namespace parT {

enum InputFeatures {
kBegin = 0,
kChargedCandidates = kBegin,
kNeutralCandidates = 1,
kVertices = 2,
kChargedCandidates4Vec = 3,
kNeutralCandidates4Vec = 4,
kVertices4Vec = 5,
kEnd = 6
};

constexpr unsigned n_cpf_accept = 25;
constexpr unsigned n_npf_accept = 25;
constexpr unsigned n_sv_accept = 5;

const std::map<InputFeatures, unsigned int> N_InputFeatures{{kChargedCandidates, 16},
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If defined this way, these global constants should be defined as inline.

Given that the keys are adjacent integers starting from 0, the map could be replaced with constexpr std::array<unsigned int, kEnd> that would avoid dynamic memory allocations, be faster to access, and be inline implicitly. (nowadays with C++20 also constexpr std::vector should work, but std::array seems easy enough here).

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi @makortel somehow I received warning being treated as error when compiling std::array, and it can be fixed by using double braces... /depot/cms/private/users/yao317/SONIC/tmp/CMSSW_14_1_0_pre0/src/RecoBTag/ONNXRuntime/interface/tensor_configs.h:49:67: error: missing braces around initializer for 'std::__array_traits<unsigned int, 6>::_Type' {aka 'unsigned int [6]'} [-Werror=missing-braces] 49 | inline constexpr std::array<unsigned int, 6> dummy { 1,1,1,1,1,1}; if you are fine with it, I will update my branch with inline and constexpr of all the variables in namespace ParT.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@kpedro88 let me know if you have any opinion on this strange warning-error message.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@y19y19 you need to put an extra set of curly braces. This is just a C++ syntax requirement. i.e.: constexpr std::array<unsigned int, 6> dummy {{ 1,1,1,1,1,1}};

{kNeutralCandidates, 8},
{kVertices, 14},
{kChargedCandidates4Vec, 4},
{kNeutralCandidates4Vec, 4},
{kVertices4Vec, 4}};

const std::map<InputFeatures, unsigned int> N_AcceptedFeatures{{kChargedCandidates, n_cpf_accept},
{kNeutralCandidates, n_npf_accept},
{kVertices, n_sv_accept},
{kChargedCandidates4Vec, n_cpf_accept},
{kNeutralCandidates4Vec, n_npf_accept},
{kVertices4Vec, n_sv_accept}};

} // namespace parT

#endif
50 changes: 50 additions & 0 deletions RecoBTag/ONNXRuntime/interface/tensor_fillers.h
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,9 @@
#define RecoBTag_ONNXRuntime_tensor_fillers_h

#include "DataFormats/BTauReco/interface/DeepFlavourTagInfo.h"
#include "DataFormats/BTauReco/interface/ParticleTransformerAK4Features.h"
#include "PhysicsTools/ONNXRuntime/interface/ONNXRuntime.h"
#include "RecoBTag/ONNXRuntime/interface/tensor_configs.h"

namespace btagbtvdeep {

Expand All @@ -19,6 +22,53 @@ namespace btagbtvdeep {

void neighbourTrack_tensor_filler(float*& ptr, const btagbtvdeep::TrackPairFeatures& neighbourTrack_features);

std::vector<float> inputs_parT(const btagbtvdeep::ChargedCandidateFeatures& c_pf_features,
parT::InputFeatures ifeature);

std::vector<float> inputs_parT(const btagbtvdeep::NeutralCandidateFeatures& n_pf_features,
parT::InputFeatures ifeature);

std::vector<float> inputs_parT(const btagbtvdeep::SecondaryVertexFeatures& sv_features, parT::InputFeatures ifeature);

template <class parT_features>
void parT_tensor_filler(cms::Ort::FloatArrays& data,
const parT::InputFeatures ifeature,
const std::vector<parT_features>& features,
const unsigned int max_n,
const float*& start,
unsigned offset) {
float* ptr = nullptr;
for (std::size_t n = 0; n < max_n; n++) {
const auto& f = features.at(n);
ptr = &data[ifeature][offset + n * parT::N_InputFeatures.at(ifeature)];
start = ptr;
const std::vector<float>& inputs = inputs_parT(f, ifeature);
for (unsigned int i = 0; i < inputs.size(); i++) {
*ptr = inputs[i];
++ptr;
}
if (inputs.size() > 0)
--ptr;
assert(start + parT::N_InputFeatures.at(ifeature) - 1 == ptr);
}
}

template <class parT_features>
void parT_tensor_filler(std::vector<float>& vdata,
const parT::InputFeatures ifeature,
const std::vector<parT_features>& features,
const unsigned int target_n) {
unsigned int n =
std::clamp((unsigned int)features.size(), (unsigned int)0, (unsigned int)parT::N_AcceptedFeatures.at(ifeature));
for (unsigned int count = 0; count < n; count++) {
const std::vector<float>& inputs = inputs_parT(features.at(count), ifeature);
vdata.insert(vdata.end(), inputs.begin(), inputs.end());
}
unsigned int n_features = parT::N_InputFeatures.at(ifeature);
if (n < target_n)
vdata.insert(vdata.end(), (target_n - n) * n_features, 0); // Add 0 to unfilled part as padding value
}

} // namespace btagbtvdeep

#endif
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,9 @@

#include "PhysicsTools/ONNXRuntime/interface/ONNXRuntime.h"

#include "RecoBTag/ONNXRuntime/interface/tensor_fillers.h"
#include "RecoBTag/ONNXRuntime/interface/tensor_configs.h"

using namespace cms::Ort;

class ParticleTransformerAK4ONNXJetTagsProducer : public edm::stream::EDProducer<edm::GlobalCache<ONNXRuntime>> {
Expand All @@ -41,24 +44,9 @@ class ParticleTransformerAK4ONNXJetTagsProducer : public edm::stream::EDProducer
std::vector<std::string> flav_names_;
std::vector<std::string> input_names_;
std::vector<std::string> output_names_;

enum InputIndexes {
kChargedCandidates = 0,
kNeutralCandidates = 1,
kVertices = 2,
kChargedCandidates4Vec = 3,
kNeutralCandidates4Vec = 4,
kVertices4Vec = 5
};
unsigned n_cpf_;
constexpr static unsigned n_features_cpf_ = 16;
constexpr static unsigned n_pairwise_features_cpf_ = 4;
unsigned n_npf_;
constexpr static unsigned n_features_npf_ = 8;
constexpr static unsigned n_pairwise_features_npf_ = 4;
unsigned n_sv_;
constexpr static unsigned n_features_sv_ = 14;
constexpr static unsigned n_pairwise_features_sv_ = 4;
unsigned int n_cpf_;
unsigned int n_npf_;
unsigned int n_sv_;
std::vector<unsigned> input_sizes_;
std::vector<std::vector<int64_t>> input_shapes_; // shapes of each input group (-1 for dynamic axis)

Expand All @@ -84,7 +72,7 @@ void ParticleTransformerAK4ONNXJetTagsProducer::fillDescriptions(edm::Configurat
desc.add<edm::InputTag>("src", edm::InputTag("pfParticleTransformerAK4TagInfos"));
desc.add<std::vector<std::string>>("input_names", {"input_1", "input_2", "input_3", "input_4", "input_5", "input_6"});
desc.add<edm::FileInPath>("model_path",
edm::FileInPath("RecoBTag/Combined/data/RobustParTAK4/PUPPI/V00/RobustParTAK4.onnx"));
edm::FileInPath("RecoBTag/Combined/data/RobustParTAK4/PUPPI/V00/modelfile/model.onnx"));
desc.add<std::vector<std::string>>("output_names", {"softmax"});
desc.add<std::vector<std::string>>(
"flav_names", std::vector<std::string>{"probb", "probbb", "problepb", "probc", "probuds", "probg"});
Expand Down Expand Up @@ -124,12 +112,12 @@ void ParticleTransformerAK4ONNXJetTagsProducer::produce(edm::Event& iEvent, cons
get_input_sizes(taginfo);

// run prediction with dynamic batch size per event
input_shapes_ = {{(int64_t)1, (int64_t)n_cpf_, (int64_t)n_features_cpf_},
{(int64_t)1, (int64_t)n_npf_, (int64_t)n_features_npf_},
{(int64_t)1, (int64_t)n_sv_, (int64_t)n_features_sv_},
{(int64_t)1, (int64_t)n_cpf_, (int64_t)n_pairwise_features_cpf_},
{(int64_t)1, (int64_t)n_npf_, (int64_t)n_pairwise_features_npf_},
{(int64_t)1, (int64_t)n_sv_, (int64_t)n_pairwise_features_sv_}};
input_shapes_ = {{(int64_t)1, (int64_t)n_cpf_, (int64_t)parT::N_InputFeatures.at(parT::kChargedCandidates)},
{(int64_t)1, (int64_t)n_npf_, (int64_t)parT::N_InputFeatures.at(parT::kNeutralCandidates)},
{(int64_t)1, (int64_t)n_sv_, (int64_t)parT::N_InputFeatures.at(parT::kVertices)},
{(int64_t)1, (int64_t)n_cpf_, (int64_t)parT::N_InputFeatures.at(parT::kChargedCandidates4Vec)},
{(int64_t)1, (int64_t)n_npf_, (int64_t)parT::N_InputFeatures.at(parT::kNeutralCandidates4Vec)},
{(int64_t)1, (int64_t)n_sv_, (int64_t)parT::N_InputFeatures.at(parT::kVertices4Vec)}};

outputs = globalCache()->run(input_names_, data_, input_shapes_, output_names_, 1)[0];
assert(outputs.size() == flav_names_.size());
Expand All @@ -151,24 +139,17 @@ void ParticleTransformerAK4ONNXJetTagsProducer::get_input_sizes(
const reco::FeaturesTagInfo<btagbtvdeep::ParticleTransformerAK4Features> taginfo) {
const auto& features = taginfo.features();

unsigned int n_cpf = features.c_pf_features.size();
unsigned int n_npf = features.n_pf_features.size();
unsigned int n_vtx = features.sv_features.size();
n_cpf_ = std::clamp((unsigned int)features.c_pf_features.size(), (unsigned int)1, (unsigned int)parT::n_cpf_accept);
n_npf_ = std::clamp((unsigned int)features.n_pf_features.size(), (unsigned int)1, (unsigned int)parT::n_npf_accept);
n_sv_ = std::clamp((unsigned int)features.sv_features.size(), (unsigned int)1, (unsigned int)parT::n_sv_accept);

n_cpf_ = std::max((unsigned int)1, n_cpf);
n_npf_ = std::max((unsigned int)1, n_npf);
n_sv_ = std::max((unsigned int)1, n_vtx);

n_cpf_ = std::min((unsigned int)25, n_cpf_);
n_npf_ = std::min((unsigned int)25, n_npf_);
n_sv_ = std::min((unsigned int)5, n_sv_);
input_sizes_ = {
n_cpf_ * n_features_cpf_,
n_npf_ * n_features_npf_,
n_sv_ * n_features_sv_,
n_cpf_ * n_pairwise_features_cpf_,
n_npf_ * n_pairwise_features_npf_,
n_sv_ * n_pairwise_features_sv_,
n_cpf_ * parT::N_InputFeatures.at(parT::kChargedCandidates),
n_npf_ * parT::N_InputFeatures.at(parT::kNeutralCandidates),
n_sv_ * parT::N_InputFeatures.at(parT::kVertices),
n_cpf_ * parT::N_InputFeatures.at(parT::kChargedCandidates4Vec),
n_npf_ * parT::N_InputFeatures.at(parT::kNeutralCandidates4Vec),
n_sv_ * parT::N_InputFeatures.at(parT::kVertices4Vec),
};
// init data storage
data_.clear();
Expand All @@ -180,116 +161,26 @@ void ParticleTransformerAK4ONNXJetTagsProducer::get_input_sizes(
}

void ParticleTransformerAK4ONNXJetTagsProducer::make_inputs(btagbtvdeep::ParticleTransformerAK4Features features) {
float* ptr = nullptr;
//float* ptr = nullptr;
const float* start = nullptr;
unsigned offset = 0;

// c_pf candidates
auto max_c_pf_n = std::min(features.c_pf_features.size(), (std::size_t)n_cpf_);
for (std::size_t c_pf_n = 0; c_pf_n < max_c_pf_n; c_pf_n++) {
const auto& c_pf_features = features.c_pf_features.at(c_pf_n);
ptr = &data_[kChargedCandidates][offset + c_pf_n * n_features_cpf_];
start = ptr;
*ptr = c_pf_features.btagPf_trackEtaRel;
*(++ptr) = c_pf_features.btagPf_trackPtRel;
*(++ptr) = c_pf_features.btagPf_trackPPar;
*(++ptr) = c_pf_features.btagPf_trackDeltaR;
*(++ptr) = c_pf_features.btagPf_trackPParRatio;
*(++ptr) = c_pf_features.btagPf_trackSip2dVal;
*(++ptr) = c_pf_features.btagPf_trackSip2dSig;
*(++ptr) = c_pf_features.btagPf_trackSip3dVal;
*(++ptr) = c_pf_features.btagPf_trackSip3dSig;
*(++ptr) = c_pf_features.btagPf_trackJetDistVal;
*(++ptr) = c_pf_features.ptrel;
*(++ptr) = c_pf_features.drminsv;
*(++ptr) = c_pf_features.vtx_ass;
*(++ptr) = c_pf_features.puppiw;
*(++ptr) = c_pf_features.chi2;
*(++ptr) = c_pf_features.quality;
assert(start + n_features_cpf_ - 1 == ptr);
}

// n_pf candidates
auto max_n_pf_n = std::min(features.n_pf_features.size(), (std::size_t)n_npf_);
for (std::size_t n_pf_n = 0; n_pf_n < max_n_pf_n; n_pf_n++) {
const auto& n_pf_features = features.n_pf_features.at(n_pf_n);
ptr = &data_[kNeutralCandidates][offset + n_pf_n * n_features_npf_];
start = ptr;
*ptr = n_pf_features.ptrel;
*(++ptr) = n_pf_features.etarel;
*(++ptr) = n_pf_features.phirel;
*(++ptr) = n_pf_features.deltaR;
*(++ptr) = n_pf_features.isGamma;
*(++ptr) = n_pf_features.hadFrac;
*(++ptr) = n_pf_features.drminsv;
*(++ptr) = n_pf_features.puppiw;
assert(start + n_features_npf_ - 1 == ptr);
}

// sv candidates
auto max_sv_n = std::min(features.sv_features.size(), (std::size_t)n_sv_);
for (std::size_t sv_n = 0; sv_n < max_sv_n; sv_n++) {
const auto& sv_features = features.sv_features.at(sv_n);
ptr = &data_[kVertices][offset + sv_n * n_features_sv_];
start = ptr;
*ptr = sv_features.pt;
*(++ptr) = sv_features.deltaR;
*(++ptr) = sv_features.mass;
*(++ptr) = sv_features.etarel;
*(++ptr) = sv_features.phirel;
*(++ptr) = sv_features.ntracks;
*(++ptr) = sv_features.chi2;
*(++ptr) = sv_features.normchi2;
*(++ptr) = sv_features.dxy;
*(++ptr) = sv_features.dxysig;
*(++ptr) = sv_features.d3d;
*(++ptr) = sv_features.d3dsig;
*(++ptr) = sv_features.costhetasvpv;
*(++ptr) = sv_features.enratio;
assert(start + n_features_sv_ - 1 == ptr);
}

// c_pf candidates
parT_tensor_filler(data_, parT::kChargedCandidates, features.c_pf_features, max_c_pf_n, start, offset);
// n_pf candidates
parT_tensor_filler(data_, parT::kNeutralCandidates, features.n_pf_features, max_n_pf_n, start, offset);
// sv candidates
parT_tensor_filler(data_, parT::kVertices, features.sv_features, max_sv_n, start, offset);
// cpf pairwise features (4-vectors)
auto max_cpf_n = std::min(features.c_pf_features.size(), (std::size_t)n_cpf_);
for (std::size_t cpf_n = 0; cpf_n < max_cpf_n; cpf_n++) {
const auto& cpf_pairwise_features = features.c_pf_features.at(cpf_n);
ptr = &data_[kChargedCandidates4Vec][offset + cpf_n * n_pairwise_features_cpf_];
start = ptr;
*ptr = cpf_pairwise_features.px;
*(++ptr) = cpf_pairwise_features.py;
*(++ptr) = cpf_pairwise_features.pz;
*(++ptr) = cpf_pairwise_features.e;

assert(start + n_pairwise_features_cpf_ - 1 == ptr);
}

parT_tensor_filler(data_, parT::kChargedCandidates4Vec, features.c_pf_features, max_c_pf_n, start, offset);
// npf pairwise features (4-vectors)
auto max_npf_n = std::min(features.n_pf_features.size(), (std::size_t)n_npf_);
for (std::size_t npf_n = 0; npf_n < max_npf_n; npf_n++) {
const auto& npf_pairwise_features = features.n_pf_features.at(npf_n);
ptr = &data_[kNeutralCandidates4Vec][offset + npf_n * n_pairwise_features_npf_];
start = ptr;
*ptr = npf_pairwise_features.px;
*(++ptr) = npf_pairwise_features.py;
*(++ptr) = npf_pairwise_features.pz;
*(++ptr) = npf_pairwise_features.e;

assert(start + n_pairwise_features_npf_ - 1 == ptr);
}

parT_tensor_filler(data_, parT::kNeutralCandidates4Vec, features.n_pf_features, max_n_pf_n, start, offset);
// sv pairwise features (4-vectors)
auto max_sv_N = std::min(features.sv_features.size(), (std::size_t)n_sv_);
for (std::size_t sv_N = 0; sv_N < max_sv_N; sv_N++) {
const auto& sv_pairwise_features = features.sv_features.at(sv_N);
ptr = &data_[kVertices4Vec][offset + sv_N * n_pairwise_features_sv_];
start = ptr;
*ptr = sv_pairwise_features.px;
*(++ptr) = sv_pairwise_features.py;
*(++ptr) = sv_pairwise_features.pz;
*(++ptr) = sv_pairwise_features.e;

assert(start + n_pairwise_features_sv_ - 1 == ptr);
}
parT_tensor_filler(data_, parT::kVertices4Vec, features.sv_features, max_sv_n, start, offset);
}

//define this as a plug-in
Expand Down
Loading