Skip to content

Commit

Permalink
docs(README): update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
OlivierDehaene committed Jul 25, 2023
1 parent a0d5535 commit e64a658
Show file tree
Hide file tree
Showing 2 changed files with 38 additions and 39 deletions.
17 changes: 4 additions & 13 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -42,20 +42,11 @@ python-client-tests:

python-tests: python-server-tests python-client-tests

run-bloom-560m:
text-generation-launcher --model-id bigscience/bloom-560m --num-shard 2 --port 8080
run-falcon-7b-instruct:
text-generation-launcher --model-id tiiuae/falcon-7b-instruct --port 8080

run-bloom-560m-quantize:
text-generation-launcher --model-id bigscience/bloom-560m --num-shard 2 --quantize --port 8080

download-bloom:
HF_HUB_ENABLE_HF_TRANSFER=1 text-generation-server download-weights bigscience/bloom

run-bloom:
text-generation-launcher --model-id bigscience/bloom --num-shard 8 --port 8080

run-bloom-quantize:
text-generation-launcher --model-id bigscience/bloom --num-shard 8 --quantize --port 8080
run-falcon-7b-instruct-quantize:
text-generation-launcher --model-id tiiuae/falcon-7b-instruct --quantize bitsandbytes --port 8080

clean:
rm -rf target aml
60 changes: 34 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,12 +25,12 @@ to power LLMs api-inference widgets.
- [Get Started](#get-started)
- [Docker](#docker)
- [API Documentation](#api-documentation)
- [Using a private or gated model](#using-a-private-or-gated-model)
- [A note on Shared Memory](#a-note-on-shared-memory-shm)
- [Distributed Tracing](#distributed-tracing)
- [Local Install](#local-install)
- [CUDA Kernels](#cuda-kernels)
- [Run BLOOM](#run-bloom)
- [Download](#download)
- [Run Falcon](#run-falcon)
- [Run](#run)
- [Quantization](#quantization)
- [Develop](#develop)
Expand Down Expand Up @@ -81,11 +81,10 @@ or
The easiest way of getting started is using the official Docker container:

```shell
model=bigscience/bloom-560m
num_shard=2
model=tiiuae/falcon-7b-instruct
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9 --model-id $model --num-shard $num_shard
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.3 --model-id $model
```
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.

Expand All @@ -99,14 +98,14 @@ You can then query the model using either the `/generate` or `/generate_stream`
```shell
curl 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17}}' \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
```

```shell
curl 127.0.0.1:8080/generate_stream \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17}}' \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
```

Expand All @@ -120,10 +119,10 @@ pip install text-generation
from text_generation import Client

client = Client("http://127.0.0.1:8080")
print(client.generate("What is Deep Learning?", max_new_tokens=17).generated_text)
print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)

text = ""
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=17):
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
if not response.token.special:
text += response.token.text
print(text)
Expand All @@ -134,14 +133,26 @@ print(text)
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

### Using on private models or gated models
### Using a private or gated model

You can use `HUGGING_FACE_HUB_TOKEN` environment variable to set the token used by `text-generation-inference` to give access to protected ressources.
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
`text-generation-inference`. This allows you to gain access to protected resources.

### Distributed Tracing
For example, if you want to serve the gated Llama V2 model variants:

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`

or with Docker:

```shell
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.3 --model-id $model
```

### A note on Shared Memory (shm)

Expand Down Expand Up @@ -169,6 +180,11 @@ and mounting it to `/dev/shm`.
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
this will impact performance.

### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

### Local install

You can also opt to install `text-generation-inference` locally.
Expand Down Expand Up @@ -205,7 +221,7 @@ Then run:

```shell
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
make run-bloom-560m
make run-falcon-7b-instruct
```

**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
Expand All @@ -221,28 +237,20 @@ the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.

Be aware that the official Docker image has them enabled by default.

## Run BLOOM

### Download

It is advised to download the weights ahead of time with the following command:

```shell
make download-bloom
```
## Run Falcon

### Run

```shell
make run-bloom # Requires 8xA100 80GB
make run-falcon-7b-instruct
```

### Quantization

You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
make run-bloom-quantize # Requires 8xA100 40GB
make run-falcon-7b-instruct-quantize
```

## Develop
Expand Down

0 comments on commit e64a658

Please sign in to comment.