Skip to content

Commit

Permalink
[mlir][AVX512] Implement sparse vector dot product integration test.
Browse files Browse the repository at this point in the history
This test operates on two hardware-vector-sized vectors and utilizes vp2intersect and mask.compress.

PHAB_REVIEW=D98099
  • Loading branch information
matthias-springer committed Mar 11, 2021
1 parent 9773cad commit c40e0d7
Showing 1 changed file with 286 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
// RUN: mlir-opt %s -convert-scf-to-std -convert-vector-to-llvm="enable-avx512" -convert-std-to-llvm | \
// RUN: mlir-translate --mlir-to-llvmir | \
// RUN: %lli --entry-function=entry --mattr="avx512bw,avx512vp2intersect" --dlopen=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s

// This test shows how to implement a sparse vector-vector dot product with
// AVX512. It uses vp2intersect, mask.compress and vector.contract to compute
// the dot product of two sparse HW vectors of 8 float64 elements ("segment").
// Each sparse vector is represented by an index memref (A or C) and by a data
// memref (B or D), containing M or N elements.
//
// There are two implementations:
// * `memref_dot_simple`: Simple O(N*M) implementation with two for loops.
// * `memref_dot_optimized`: An optimized O(N*M) version of the previous
// implementation, where the second for loop skips over some elements.

#contraction_accesses = [
affine_map<(i) -> (i)>,
affine_map<(i) -> (i)>,
affine_map<(i) -> ()>
]
#contraction_trait = {
indexing_maps = #contraction_accesses,
iterator_types = ["reduction"]
}

// Sparse vector dot product of two vectors.
func @vector_dot(%v_A : vector<8xi64>, %v_B : vector<8xf64>,
%v_C : vector<8xi64>, %v_D : vector<8xf64>) -> f64 {
// Compute intersection of indices.
%k0, %k1 = avx512.vp2intersect %v_A, %v_C : vector<8xi64>

// Filter out values without match and compress vector.
%p0 = avx512.mask.compress %k0, %v_B : vector<8xf64>
%p1 = avx512.mask.compress %k1, %v_D : vector<8xf64>

// Dense vector dot product.
%acc = std.constant 0.0 : f64
%r = vector.contract #contraction_trait %p0, %p1, %acc
: vector<8xf64>, vector<8xf64> into f64

return %r : f64
}

// Fill input memrefs will all zeros, so that they can be used with arbitrary
// input sizes up to 128 elements per sparse vector.
func @init_input(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
%m_C : memref<?xi64>, %m_D : memref<?xf64>) {
%c0 = constant 0 : index
%v_data = constant dense<0.0> : vector<128xf64>
%v_index = constant dense<9223372036854775807> : vector<128xi64>

vector.transfer_write %v_index, %m_A[%c0] : vector<128xi64>, memref<?xi64>
vector.transfer_write %v_data, %m_B[%c0] : vector<128xf64>, memref<?xf64>
vector.transfer_write %v_index, %m_C[%c0] : vector<128xi64>, memref<?xi64>
vector.transfer_write %v_data, %m_D[%c0] : vector<128xf64>, memref<?xf64>

return
}

func @fill_input_1(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
%m_C : memref<?xi64>, %m_D : memref<?xf64>)
-> (index, index){
call @init_input(%m_A, %m_B, %m_C, %m_D)
: (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>) -> ()

%c0 = constant 0 : index

%v_A = std.constant dense<[0, 1, 10, 12, 13, 17, 18, 21,
51, 52, 57, 61, 62, 82, 98, 99]> : vector<16xi64>
%v_B = std.constant dense<[1., 5., 8., 3., 2., 1., 0., 9.,
6., 7., 7., 3., 5., 2., 9., 1.]> : vector<16xf64>
%v_C = std.constant dense<[1, 2, 5, 10, 11, 12, 47, 48,
67, 68, 69, 70, 71, 72, 77, 78,
79, 82, 83, 84, 85, 90, 91, 98]> : vector<24xi64>
%v_D = std.constant dense<[1., 5., 8., 3., 2., 1., 2., 9.,
6., 7., 7., 3., 5., 2., 9., 1.,
2., 9., 8., 7., 2., 0., 0., 4.]> : vector<24xf64>

vector.transfer_write %v_A, %m_A[%c0] : vector<16xi64>, memref<?xi64>
vector.transfer_write %v_B, %m_B[%c0] : vector<16xf64>, memref<?xf64>
vector.transfer_write %v_C, %m_C[%c0] : vector<24xi64>, memref<?xi64>
vector.transfer_write %v_D, %m_D[%c0] : vector<24xf64>, memref<?xf64>

%M = std.constant 16 : index
%N = std.constant 24 : index

return %M, %N : index, index
}

func @fill_input_2(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
%m_C : memref<?xi64>, %m_D : memref<?xf64>)
-> (index, index){
call @init_input(%m_A, %m_B, %m_C, %m_D)
: (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>) -> ()

%c0 = constant 0 : index

%v_A = std.constant dense<[0, 1, 3, 5, 6, 7, 8, 9,
51, 52, 57, 61, 62, 63, 65, 66]> : vector<16xi64>
%v_B = std.constant dense<[1., 5., 8., 3., 2., 1., 2., 9.,
6., 7., 7., 3., 5., 2., 9., 1.]> : vector<16xf64>
%v_C = std.constant dense<[6, 7, 11, 12, 15, 17, 19, 21,
30, 31, 33, 34, 37, 39, 40, 41,
42, 44, 45, 46, 47, 48, 49, 50,
62, 63, 64, 65, 66, 67, 68, 69,
70, 77, 78, 79, 81, 82, 89, 99]> : vector<40xi64>
%v_D = std.constant dense<[1., 5., 8., 3., 2., 1., 2., 9.,
6., 7., 7., 3., 5., 2., 9., 1.,
2., 9., 8., 7., 2., 1., 2., 4.,
4., 5., 8., 8., 2., 3., 5., 1.,
8., 6., 6., 4., 3., 8., 9., 2.]> : vector<40xf64>

vector.transfer_write %v_A, %m_A[%c0] : vector<16xi64>, memref<?xi64>
vector.transfer_write %v_B, %m_B[%c0] : vector<16xf64>, memref<?xf64>
vector.transfer_write %v_C, %m_C[%c0] : vector<40xi64>, memref<?xi64>
vector.transfer_write %v_D, %m_D[%c0] : vector<40xf64>, memref<?xf64>

%M = std.constant 16 : index
%N = std.constant 40 : index

return %M, %N : index, index
}

// Simple vector dot product implementation: Intersect every segment of size 8
// in (%m_A, %m_B) with every segment of size 8 in (%m_C, %m_D).
func @memref_dot_simple(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
%m_C : memref<?xi64>, %m_D : memref<?xf64>,
%M : index, %N : index)
-> f64 {
// Helper constants for loops.
%c0 = constant 0 : index
%c8 = constant 8 : index

%data_zero = constant 0.0 : f64
%index_padding = constant 9223372036854775807 : i64

// Notation: %sum is the current (partial) aggregated dot product sum.

%r0 = scf.for %a = %c0 to %M step %c8
iter_args(%sum0 = %data_zero) -> (f64) {
%v_A = vector.transfer_read %m_A[%a], %index_padding
: memref<?xi64>, vector<8xi64>
%v_B = vector.transfer_read %m_B[%a], %data_zero
: memref<?xf64>, vector<8xf64>

%r1 = scf.for %b = %c0 to %N step %c8
iter_args(%sum1 = %sum0) -> (f64) {
%v_C = vector.transfer_read %m_C[%b], %index_padding
: memref<?xi64>, vector<8xi64>
%v_D = vector.transfer_read %m_D[%b], %data_zero
: memref<?xf64>, vector<8xf64>

%subresult = call @vector_dot(%v_A, %v_B, %v_C, %v_D)
: (vector<8xi64>, vector<8xf64>, vector<8xi64>, vector<8xf64>) -> f64
%r2 = addf %sum1, %subresult : f64
scf.yield %r2 : f64
}

scf.yield %r1 : f64
}

return %r0 : f64
}

// Optimized vector dot product implementation: Taking advantage of the fact
// that indices in %m_A and %m_C are sorted ascendingly, skip over segments
// in (%m_C, %m_D) that are know to have no intersection with the current
// segment from (%m_A, %m_B).
func @memref_dot_optimized(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
%m_C : memref<?xi64>, %m_D : memref<?xf64>,
%M : index, %N : index)
-> f64 {
// Helper constants for loops.
%c0 = constant 0 : index
%i0 = constant 0 : i32
%i7 = constant 7 : i32
%c8 = constant 8 : index

%data_zero = constant 0.0 : f64
%index_padding = constant 9223372036854775807 : i64

// Notation: %sum is the current (partial) aggregated dot product sum.
// %j_start is the value from which the inner for loop starts iterating. This
// value keeps increasing if earlier segments of (%m_C, %m_D) are known to
// be no longer needed.

%r0, %t0 = scf.for %a = %c0 to %M step %c8
iter_args(%sum0 = %data_zero, %b_start0 = %c0) -> (f64, index) {
%v_A = vector.transfer_read %m_A[%a], %index_padding
: memref<?xi64>, vector<8xi64>
%segA_min = vector.extractelement %v_A[%i0 : i32] : vector<8xi64>

%r1, %next_b_start0 = scf.for %b = %b_start0 to %N step %c8
iter_args(%sum1 = %sum0, %b_start1 = %b_start0) -> (f64, index) {
%v_C = vector.transfer_read %m_C[%b], %index_padding
: memref<?xi64>, vector<8xi64>
%segB_max = vector.extractelement %v_C[%i7 : i32] : vector<8xi64>
%seg1_done = cmpi "slt", %segB_max, %segA_min : i64

%r2, %next_b_start1 = scf.if %seg1_done -> (f64, index) {
// %v_C segment is done, no need to examine this one again (ever).
%next_b_start2 = addi %b_start1, %c8 : index
scf.yield %sum1, %next_b_start2 : f64, index
} else {
%v_B = vector.transfer_read %m_B[%a], %data_zero
: memref<?xf64>, vector<8xf64>
%v_D = vector.transfer_read %m_D[%b], %data_zero
: memref<?xf64>, vector<8xf64>

%subresult = call @vector_dot(%v_A, %v_B, %v_C, %v_D)
: (vector<8xi64>, vector<8xf64>, vector<8xi64>, vector<8xf64>)
-> f64
%r3 = addf %sum1, %subresult : f64
scf.yield %r3, %b_start1 : f64, index
}

scf.yield %r2, %next_b_start1 : f64, index
}

scf.yield %r1, %next_b_start0 : f64, index
}

return %r0 : f64
}

func @entry() -> i32 {
// Initialize large buffers that can be used for multiple test cases of
// different sizes.
%b_A = alloc() : memref<128xi64>
%b_B = alloc() : memref<128xf64>
%b_C = alloc() : memref<128xi64>
%b_D = alloc() : memref<128xf64>

%m_A = memref_cast %b_A : memref<128xi64> to memref<?xi64>
%m_B = memref_cast %b_B : memref<128xf64> to memref<?xf64>
%m_C = memref_cast %b_C : memref<128xi64> to memref<?xi64>
%m_D = memref_cast %b_D : memref<128xf64> to memref<?xf64>

// --- Test case 1 ---.
// M and N must be a multiple of 8 if smaller than 128.
// (Because padding kicks in only for out-of-bounds accesses.)
%M1, %N1 = call @fill_input_1(%m_A, %m_B, %m_C, %m_D)
: (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>)
-> (index, index)

%r0 = call @memref_dot_simple(%m_A, %m_B, %m_C, %m_D, %M1, %N1)
: (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
index, index) -> f64
vector.print %r0 : f64
// CHECK: 86

%r1 = call @memref_dot_optimized(%m_A, %m_B, %m_C, %m_D, %M1, %N1)
: (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
index, index) -> f64
vector.print %r1 : f64
// CHECK: 86

// --- Test case 2 ---.
// M and N must be a multiple of 8 if smaller than 128.
// (Because padding kicks in only for out-of-bounds accesses.)
%M2, %N2 = call @fill_input_2(%m_A, %m_B, %m_C, %m_D)
: (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>)
-> (index, index)

%r3 = call @memref_dot_simple(%m_A, %m_B, %m_C, %m_D, %M2, %N2)
: (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
index, index) -> f64
vector.print %r3 : f64
// CHECK: 111

%r4 = call @memref_dot_optimized(%m_A, %m_B, %m_C, %m_D, %M2, %N2)
: (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
index, index) -> f64
vector.print %r4 : f64
// CHECK: 111

// Release all resources.
dealloc %b_A : memref<128xi64>
dealloc %b_B : memref<128xf64>
dealloc %b_C : memref<128xi64>
dealloc %b_D : memref<128xf64>

%r = constant 0 : i32
return %r : i32
}

0 comments on commit c40e0d7

Please sign in to comment.