Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add random stars example #35

Open
wants to merge 9 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,8 @@ on:
- master
- dev
tags: '*'
pull_request:
# RESTORE before merge
#pull_request:
release:

jobs:
Expand Down
147 changes: 147 additions & 0 deletions examples/minimal_GP.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
using BAT
using Random, LinearAlgebra
using Distributions
using ValueShapes
using Plots
using FFTW
import ForwardDiff
using DelimitedFiles
using PDMats
using MGVI
using Optim
# using Zygote: @adjoint, @ignore, gradient
using Zygote


n_data = 100
dims = (n_data,)
distances = (1/dims[1],)

harmonic_pad_distances = 1 ./ (2 .* dims .* distances)


function map_idx(idx::Real, idx_range::AbstractUnitRange{<:Integer})
i = idx - minimum(idx_range)
n = length(eachindex(idx_range))
n_2 = n >> 1
ifelse(i <= n_2, i, i - n)
end

function dist_k(idx::CartesianIndex, ax::NTuple{N,<:AbstractUnitRange{<:Integer}}, harmonic_distances::NTuple{N,<:Real}) where N
mapped_idx = map(map_idx, Tuple(idx), ax)
norm(map(*, mapped_idx, harmonic_distances))
end

function dist_array(dims::NTuple{N,<:Real}, harmonic_distances::NTuple{N,<:Real}) where N
cart_idxs = CartesianIndices(map(Base.OneTo, dims))
dist_k.(cart_idxs, Ref(axes(cart_idxs)), Ref(harmonic_distances))
end

function my_mask(x, n_data::Integer)
# y = x[mask]
y = x[1:n_data] #FIXME
y
end


function amplitude_forward_model(parameters)
corr = (parameters.fluctuations ./(1 .+ (D./0.1).^(-parameters.slope)))[2:end]
corr = vcat(parameters.zero_mode, corr)
# corr[1] = parameters.zero_mode
corr.^0.5
end


function gp_forward_model(parameters::NamedTuple, n_data::Integer, n_x_pad::Integer, harmonic_pad_distances::Tuple, ht::FFTW.r2rFFTWPlan)
amplitude = amplitude_forward_model(parameters)
# amplitude = 1.
harmonic_gp = amplitude .* parameters.ξ
gp = apply_ht(ht, harmonic_gp) * (harmonic_pad_distances[1] / sqrt(n_x_pad))
my_mask(gp, n_data)
end

function apply_ht(ht::FFTW.r2rFFTWPlan, dp::Vector{Float64})
ht * dp
end


function apply_ht(ht::FFTW.r2rFFTWPlan, dp::Vector{ForwardDiff.Dual{T, V, N}}) where {T,V,N}
val_res = ht * ForwardDiff.value.(dp)
psize = size(ForwardDiff.partials(dp[1]), 1)
ps = x -> ForwardDiff.partials.(dp, x)
val_ps = map((x -> ht*ps(x)), 1:psize)
ForwardDiff.Dual{T}.(val_res, val_ps...)
end

rng = Random.default_rng()

# trafo_dht = FFTW.plan_r2r(zeros(2 .* dims), FFTW.DHT)
x = collect(distances[1]:distances[1]:distances[1] * dims[1];)
x_pad = collect(distances[1]:distances[1]:distances[1] * dims[1]*2;)

ht = FFTW.plan_r2r(zeros(length(x_pad)), FFTW.DHT);
D = dist_array(2 .* dims, harmonic_pad_distances)


mask = collect(1:length(x_pad))
mask = mask .<= length(mask)÷2

prior = NamedTupleDist(
ξ = BAT.StandardMvNormal(length(D)),
fluctuations = Uniform(0, 100000), #FIXME something is off with parametrzization
zero_mode = Uniform(0.1, 200),
slope = Uniform(-4, -2),
)

bwd_trafo = BAT.DistributionTransform(Normal, prior)
fwd_trafo = inv(bwd_trafo)


truth = rand(prior)
standard_truth = bwd_trafo(truth)
N = 1
n = N * randn(n_data)

true_gp = gp_forward_model(truth, n_data, length(x_pad), harmonic_pad_distances, ht)
data = true_gp + n


model = let fwd_trafo = fwd_trafo, n_data = length(data), n_x_pad = length(x_pad), harmonic_pad_distances = harmonic_pad_distances, ht = ht
function (stand_pars)
parameters = fwd_trafo(stand_pars)[]
Product(Normal.(gp_forward_model(parameters, n_data, n_x_pad, harmonic_pad_distances, ht), N))
end
end

N_samps = 5
starting_point = bwd_trafo(rand(prior))
first_iteration = mgvi_kl_optimize_step(rng,
model, data,
starting_point;
jacobian_func=FwdRevADJacobianFunc,
residual_sampler=ImplicitResidualSampler,
num_residuals=N_samps,
optim_options=Optim.Options(iterations=10, show_trace=true),
residual_sampler_options=(;cg_params=(;maxiter=100)))

next_iteration = first_iteration

for i in 1:5
global next_iteration = mgvi_kl_optimize_step(rng,
model, data,
next_iteration.result;
jacobian_func=FwdRevADJacobianFunc,
residual_sampler=ImplicitResidualSampler,
num_residuals=N_samps,
optim_options=Optim.Options(iterations=20, show_trace=true),
residual_sampler_options=(;cg_params=(;maxiter=100)))
end


res = fwd_trafo(next_iteration.result)[1]
plot(data,label="data",seriestype = :scatter)
for i in 1:N_samps*2
plot!(gp_forward_model(fwd_trafo(next_iteration.samples[:,i])[1], length(data), length(x_pad), harmonic_pad_distances, ht),color="black",alpha=0.3)
end
plot!(true_gp,label="truth", color="green")
plot!(gp_forward_model(res, length(data), length(x_pad), harmonic_pad_distances, ht),label="mean", color="red")
Loading