Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions example/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ def define_config():
# Define config
config.input_path = "input/exafel_1.npz"
config.output_path = "output/"
config.experiment_name = "exafel"

config = config_module.Config
config.compression_ratio = 1000
Expand Down
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,4 @@ scipy==1.10.1
setuptools==50.3.1
torch==2.1.0
tqdm==4.66.1
mlflow
41 changes: 31 additions & 10 deletions src/baler_compressor/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from torch.utils.data import DataLoader
from tqdm.autonotebook import tqdm
import math
import mlflow

import baler_compressor.helper as helper
import baler_compressor.utils as utils
Expand Down Expand Up @@ -46,6 +47,17 @@ def run(data_path, config):
verbose,
)


experiment_name = config.experiment_name
if not os.path.exists(config.output_path):
os.mkdir(config.output_path)

mlflow.set_tracking_uri(f"sqlite:///{os.path.abspath(config.output_path)}/mlruns.db")
tracking_uri = mlflow.get_tracking_uri()

print(f"Current tracking uri: {tracking_uri}")
mlflow.set_experiment(experiment_name)

if verbose:
print("Training and testing sets normalized")

Expand Down Expand Up @@ -109,15 +121,18 @@ def run(data_path, config):
# if verbose:
# print(f"Training path: {training_path}")

trained_model, loss_data = train(
model,
number_of_columns,
train_set_norm,
test_set_norm,
# training_path,
config,
)

with mlflow.start_run():
for k,v in config.__dict__.items():mlflow.log_param(k,v)
trained_model, loss_data = train(
model,
number_of_columns,
train_set_norm,
test_set_norm,
# training_path,
config,
)
mlflow.end_run()

if verbose:
print("Training complete")

Expand Down Expand Up @@ -421,6 +436,11 @@ def train(model, variables, train_data, test_data, config):
)
train_loss.append(train_epoch_loss)

mlflow.log_metric("Train Loss", train_epoch_loss, step=epoch)
mlflow.log_metric("Train Loss MSE", mse_loss_fit, step=epoch)
mlflow.log_metric("Learning Rate ",lr_scheduler.lr_scheduler.get_last_lr()[0])
mlflow.log_metric("Train Regularized Loss", regularizer_loss_fit, step=epoch)

if test_size:
val_epoch_loss = validate(
model=trained_model,
Expand All @@ -439,7 +459,8 @@ def train(model, variables, train_data, test_data, config):
early_stopping(val_epoch_loss)
if early_stopping.early_stop:
break


mlflow.log_metric("Test Loss", val_epoch_loss, step=epoch)
### Implementation to save models & values after every N epochs, where N is stored in 'intermittent_saving_patience':
# if intermittent_model_saving:
# if epoch % intermittent_saving_patience == 0:
Expand Down