Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions baler/modules/data_processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,10 @@ def encoder_saver(model, model_path: str) -> None:
Returns:
None: Saved encoder state dictionary as `.pt` file.
"""
torch.save(model.encoder.state_dict(), model_path)
if hasattr(model.encoder, "state_dict"):
torch.save(model.encoder.state_dict(), model_path)
else:
model.save_encoder(model_path)


def decoder_saver(model, model_path: str) -> None:
Expand All @@ -70,7 +73,10 @@ def decoder_saver(model, model_path: str) -> None:
Returns:
None: Saved decoder state dictionary as `.pt` file.
"""
torch.save(model.decoder.state_dict(), model_path)
if hasattr(model.decoder, "state_dict"):
torch.save(model.decoder.state_dict(), model_path)
else:
model.save_decoder(model_path)


def initialise_model(model_name: str):
Expand Down
78 changes: 78 additions & 0 deletions baler/modules/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -712,3 +712,81 @@ def get_final_layer_dims(self):

def set_final_layer_dims(self, conv_op_shape):
self.conv_op_shape = conv_op_shape


class PJ_Conv_AE_FPGA(nn.Module):
def __init__(self, n_features, z_dim=10, *args, **kwargs):
super(PJ_Conv_AE_FPGA, self).__init__(*args, **kwargs)

# Encoder layers
self.en1 = nn.Conv2d(1, 20, kernel_size=5, stride=2, padding=2)
self.en_act1 = nn.ReLU()
self.en2 = nn.Conv2d(20, 50, kernel_size=5, stride=2, padding=2)
self.en_act2 = nn.Flatten()
self.en3 = nn.Linear(50 * 7 * 7, 500)
self.en4 = nn.Linear(500, z_dim)

# Decoder layers
self.de1 = nn.Linear(z_dim, 500)
self.de_act1 = nn.ReLU()
self.de2 = nn.Linear(500, 2450)
self.de_unflatten = nn.Unflatten(1, (50, 7, 7))
self.de_conv1 = nn.ConvTranspose2d(
50, 20, kernel_size=5, stride=2, padding=2, output_padding=1
)
self.de_conv2 = nn.ConvTranspose2d(
20, 1, kernel_size=5, stride=2, padding=2, output_padding=1
)
self.de_act2 = nn.ReLU()

self.output_shape = None

def encoder(self, x):
s1 = self.en1(x)
s2 = self.en_act1(s1)
s3 = self.en2(s2)
s4 = self.en_act2(s3)
s5 = self.en3(s4)
s6 = self.en4(s5)
return s6

def decoder(self, z):
d1 = self.de1(z)
d2 = self.de_act1(d1)
d3 = self.de2(d2)
d4 = self.de_unflatten(d3)
d5 = self.de_conv1(d4)
d6 = self.de_conv2(d5)
self.output_shape = d6.shape
return d6

def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded

def get_final_layer_dims(self):
return

def set_final_layer_dims(self, conv_op_shape):
self.conv_op_shape = conv_op_shape

def save_encoder(self, file_path):
# Create an instance of the encoder
encoder_instance = nn.Sequential(
self.en1, self.en_act1, self.en2, self.en_act2, self.en3, self.en4
)
torch.save(encoder_instance.state_dict(), file_path)

def save_decoder(self, file_path):
# Create an instance of the decoder
decoder_instance = nn.Sequential(
self.de1,
self.de_act1,
self.de2,
self.de_unflatten,
self.de_conv1,
self.de_conv2,
self.de_act2,
)
torch.save(decoder_instance.state_dict(), file_path)