Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add iTransformer multivariate forecaster #3017

Merged
merged 19 commits into from
Dec 22, 2023
Merged
308 changes: 308 additions & 0 deletions examples/iTransformer.ipynb
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this examples folder we should remove eventually. How about keeping his notebook close to the model? In its subpackage I mean. Pip install should anyway ignore it

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this example folder is nice as its the only one with a multivariate model (showing the grouping and evaluation) as well as plotting some of the dims of the multivariate...

Large diffs are not rendered by default.

22 changes: 22 additions & 0 deletions src/gluonts/torch/model/i_transformer/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

from .module import ITransformerModel
from .lightning_module import ITransformerLightningModule
from .estimator import ITransformerEstimator

__all__ = [
"ITransformerModel",
"ITransformerLightningModule",
"ITransformerEstimator",
]
282 changes: 282 additions & 0 deletions src/gluonts/torch/model/i_transformer/estimator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,282 @@
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

from typing import Optional, Iterable, Dict, Any

import torch
import lightning.pytorch as pl

from gluonts.core.component import validated
from gluonts.dataset.common import Dataset
from gluonts.dataset.field_names import FieldName
from gluonts.dataset.loader import as_stacked_batches
from gluonts.itertools import Cyclic
from gluonts.torch.modules.loss import DistributionLoss, NegativeLogLikelihood
from gluonts.transform import (
AsNumpyArray,
Transformation,
AddObservedValuesIndicator,
InstanceSampler,
InstanceSplitter,
ValidationSplitSampler,
TestSplitSampler,
ExpectedNumInstanceSampler,
SelectFields,
)
from gluonts.torch.model.estimator import PyTorchLightningEstimator
from gluonts.torch.model.predictor import PyTorchPredictor
from gluonts.torch.distributions import DistributionOutput, StudentTOutput

from .lightning_module import ITransformerLightningModule

PREDICTION_INPUT_NAMES = ["past_target", "past_observed_values"]

TRAINING_INPUT_NAMES = PREDICTION_INPUT_NAMES + [
"future_target",
"future_observed_values",
]


class ITransformerEstimator(PyTorchLightningEstimator):
"""
An estimator training the iTransformer model for multivariate forecasting as described in
https://arxiv.org/abs/2310.06625 extended to be probabilistic.

This class uses the model defined in ``ITransformerModel``,
and wraps it into a ``ITransformerLightningModule`` for training
purposes: training is performed using PyTorch Lightning's ``pl.Trainer``
class.

Parameters
----------
prediction_length
Length of the prediction horizon.
context_length
Number of time steps prior to prediction time that the model
takes as inputs (default: ``10 * prediction_length``).
d_model
Size of latent in the Transformer encoder.
nhead
Number of attention heads in the Transformer encoder which must divide d_model.
dim_feedforward
Size of hidden layers in the Transformer encoder.
dropout
Dropout probability in the Transformer encoder.
activation
Activation function in the Transformer encoder.
norm_first
Whether to apply normalization before or after the attention.
num_encoder_layers
Number of layers in the Transformer encoder.
lr
Learning rate (default: ``1e-3``).
weight_decay
Weight decay regularization parameter (default: ``1e-8``).
scaling
Scaling parameter can be "mean", "std" or None.
distr_output
Distribution to use to evaluate observations and sample predictions
(default: StudentTOutput()).
num_parallel_samples
Number of samples per time series to that the resulting predictor
should produce (default: 100).
loss
Loss to be optimized during training
(default: ``NegativeLogLikelihood()``).
batch_size
The size of the batches to be used for training (default: 32).
num_batches_per_epoch
Number of batches to be processed in each training epoch
(default: 50).
trainer_kwargs
Additional arguments to provide to ``pl.Trainer`` for construction.
train_sampler
Controls the sampling of windows during training.
validation_sampler
Controls the sampling of windows during validation.
nonnegative_pred_samples
Should final prediction samples be non-negative? If yes, an activation
function is applied to ensure non-negative. Observe that this is applied
only to the final samples and this is not applied during training.
"""

@validated()
def __init__(
self,
prediction_length: int,
context_length: Optional[int] = None,
d_model: int = 32,
nhead: int = 4,
dim_feedforward: int = 128,
dropout: float = 0.1,
activation: str = "relu",
norm_first: bool = False,
num_encoder_layers: int = 2,
lr: float = 1e-3,
weight_decay: float = 1e-8,
scaling: Optional[str] = "mean",
distr_output: DistributionOutput = StudentTOutput(),
loss: DistributionLoss = NegativeLogLikelihood(),
num_parallel_samples: int = 100,
batch_size: int = 32,
num_batches_per_epoch: int = 50,
trainer_kwargs: Optional[Dict[str, Any]] = None,
train_sampler: Optional[InstanceSampler] = None,
validation_sampler: Optional[InstanceSampler] = None,
nonnegative_pred_samples: bool = False,
) -> None:
default_trainer_kwargs = {
"max_epochs": 100,
"gradient_clip_val": 10.0,
}
if trainer_kwargs is not None:
default_trainer_kwargs.update(trainer_kwargs)
super().__init__(trainer_kwargs=default_trainer_kwargs)

self.prediction_length = prediction_length
self.context_length = context_length or 10 * prediction_length
# TODO find way to enforce same defaults to network and estimator
# somehow
self.lr = lr
self.weight_decay = weight_decay
self.distr_output = distr_output
self.num_parallel_samples = num_parallel_samples
self.loss = loss
self.scaling = scaling
self.d_model = d_model
self.nhead = nhead
self.dim_feedforward = dim_feedforward
self.dropout = dropout
self.activation = activation
self.norm_first = norm_first
self.num_encoder_layers = num_encoder_layers
self.batch_size = batch_size
self.num_batches_per_epoch = num_batches_per_epoch
self.nonnegative_pred_samples = nonnegative_pred_samples

self.train_sampler = train_sampler or ExpectedNumInstanceSampler(
num_instances=1.0, min_future=prediction_length
)
self.validation_sampler = validation_sampler or ValidationSplitSampler(
min_future=prediction_length
)

def create_transformation(self) -> Transformation:
return (
SelectFields(
[
FieldName.ITEM_ID,
FieldName.INFO,
FieldName.START,
FieldName.TARGET,
],
allow_missing=True,
)
+ AsNumpyArray(field=FieldName.TARGET, expected_ndim=2)
+ AddObservedValuesIndicator(
target_field=FieldName.TARGET,
output_field=FieldName.OBSERVED_VALUES,
)
)

def create_lightning_module(self) -> pl.LightningModule:
return ITransformerLightningModule(
loss=self.loss,
lr=self.lr,
weight_decay=self.weight_decay,
num_parallel_samples=self.num_parallel_samples,
model_kwargs={
"prediction_length": self.prediction_length,
"context_length": self.context_length,
"d_model": self.d_model,
"nhead": self.nhead,
"dim_feedforward": self.dim_feedforward,
"dropout": self.dropout,
"activation": self.activation,
"norm_first": self.norm_first,
"num_encoder_layers": self.num_encoder_layers,
"distr_output": self.distr_output,
"scaling": self.scaling,
"nonnegative_pred_samples": self.nonnegative_pred_samples,
},
)

def _create_instance_splitter(
self, module: ITransformerLightningModule, mode: str
):
assert mode in ["training", "validation", "test"]

instance_sampler = {
"training": self.train_sampler,
"validation": self.validation_sampler,
"test": TestSplitSampler(),
}[mode]

return InstanceSplitter(
target_field=FieldName.TARGET,
is_pad_field=FieldName.IS_PAD,
start_field=FieldName.START,
forecast_start_field=FieldName.FORECAST_START,
instance_sampler=instance_sampler,
past_length=self.context_length,
future_length=self.prediction_length,
time_series_fields=[FieldName.OBSERVED_VALUES],
dummy_value=self.distr_output.value_in_support,
)

def create_training_data_loader(
self,
data: Dataset,
module: ITransformerLightningModule,
shuffle_buffer_length: Optional[int] = None,
**kwargs
) -> Iterable:
data = Cyclic(data).stream()
instances = self._create_instance_splitter(module, "training").apply(
data, is_train=True
)
return as_stacked_batches(
instances,
batch_size=self.batch_size,
shuffle_buffer_length=shuffle_buffer_length,
field_names=TRAINING_INPUT_NAMES,
output_type=torch.tensor,
num_batches_per_epoch=self.num_batches_per_epoch,
)

def create_validation_data_loader(
self, data: Dataset, module: ITransformerLightningModule, **kwargs
) -> Iterable:
instances = self._create_instance_splitter(module, "validation").apply(
data, is_train=True
)
return as_stacked_batches(
instances,
batch_size=self.batch_size,
field_names=TRAINING_INPUT_NAMES,
output_type=torch.tensor,
)

def create_predictor(
self, transformation: Transformation, module
) -> PyTorchPredictor:
prediction_splitter = self._create_instance_splitter(module, "test")

return PyTorchPredictor(
input_transform=transformation + prediction_splitter,
input_names=PREDICTION_INPUT_NAMES,
prediction_net=module,
batch_size=self.batch_size,
prediction_length=self.prediction_length,
device="auto",
)
Loading
Loading