Skip to content

Commit

Permalink
lint: freeze & run Black version 24.02 (#3131)
Browse files Browse the repository at this point in the history
*Issue #, if available:*
set a single black version to ensure reproducibility
UPDATE: seem that the latest Black would need to be applied

*Description of changes:*
freeze Black version, but the better way is in #3111


By submitting this pull request, I confirm that you can use, modify,
copy, and redistribute this contribution, under the terms of your
choice.


**Please tag this pr with at least one of these labels to make our
release process faster:** BREAKING, new feature, bug fix, other change,
dev setup

cc: @jaheba @kashif @lostella
  • Loading branch information
Borda authored Apr 5, 2024
1 parent dbbd6e7 commit 61133ef
Show file tree
Hide file tree
Showing 26 changed files with 44 additions and 47 deletions.
22 changes: 8 additions & 14 deletions .github/workflows/style_type_checks.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,22 +9,16 @@ jobs:
steps:
- uses: actions/checkout@v3
- uses: extractions/setup-just@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Set up Python 3.8
uses: actions/setup-python@v4
with:
python-version: '3.8'
- uses: actions/setup-python@v4
- name: Install dependencies
run: |
pip install .
pip install click black mypy
pip install types-python-dateutil
pip install types-waitress
pip install types-PyYAML
- name: Style and type checks
run: |
just black
just mypy
# todo: install also `black[jupyter]`
pip install click "black==24.02" "mypy==1.8.0" \
types-python-dateutil types-waitress types-PyYAML
- name: Style check
run: just black
- name: Type check
run: just mypy
- name: Check license headers
run: just license
2 changes: 1 addition & 1 deletion Justfile
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ release:
python setup.py sdist

black:
black --check src test examples
black --check --color src test examples

mypy:
python setup.py type_check
Expand Down
1 change: 1 addition & 0 deletions examples/anomaly_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
"""
This example shows how to do anomaly detection with DeepAR.
The model is first trained and then time-points with the largest negative log-likelihood are plotted.
"""
import numpy as np
from itertools import islice
Expand Down
1 change: 1 addition & 0 deletions examples/warm_start.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@

"""
This example show how to intialize the network with parameters from a model that was previously trained.
"""

from gluonts.dataset.repository import get_dataset, dataset_recipes
Expand Down
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
[tool.black]
target-version = ['py38']
line-length = 79

[tool.pytest.ini_options]
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/ext/rotbaum/_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,7 @@ def fit(
# XGBoost, but True if one uses lightgbm.
model_is_already_trained: bool = False, # True if there is no need to
# train self.model
**kwargs
**kwargs,
):
"""
Fits self.model and partitions R^n into cells.
Expand Down
6 changes: 3 additions & 3 deletions src/gluonts/ext/rotbaum/_preprocess.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def __init__(
max_n_datapts: int = 400000,
seed: Optional[int] = None,
num_samples: Optional[int] = None,
**kwargs
**kwargs,
):
"""
Parameters
Expand Down Expand Up @@ -296,7 +296,7 @@ def __init__(
one_hot_encode: bool = True,
subtract_mean: bool = True,
count_nans: bool = False,
**kwargs
**kwargs,
):
if one_hot_encode:
assert cardinality != "ignore" or (
Expand All @@ -313,7 +313,7 @@ def __init__(
stratify_targets=stratify_targets,
n_ignore_last=n_ignore_last,
num_samples=num_samples,
**kwargs
**kwargs,
)

self.use_feat_static_real = use_feat_static_real
Expand Down
6 changes: 3 additions & 3 deletions src/gluonts/model/evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ def evaluate_forecasts_raw(
batch_size: int = 100,
mask_invalid_label: bool = True,
allow_nan_forecast: bool = False,
seasonality: Optional[int] = None
seasonality: Optional[int] = None,
) -> dict:
"""
Evaluate ``forecasts`` by comparing them with ``test_data``, according
Expand Down Expand Up @@ -189,7 +189,7 @@ def evaluate_forecasts(
batch_size: int = 100,
mask_invalid_label: bool = True,
allow_nan_forecast: bool = False,
seasonality: Optional[int] = None
seasonality: Optional[int] = None,
) -> pd.DataFrame:
"""
Evaluate ``forecasts`` by comparing them with ``test_data``, according
Expand Down Expand Up @@ -243,7 +243,7 @@ def evaluate_model(
batch_size: int = 100,
mask_invalid_label: bool = True,
allow_nan_forecast: bool = False,
seasonality: Optional[int] = None
seasonality: Optional[int] = None,
) -> pd.DataFrame:
"""
Evaluate ``model`` when applied to ``test_data``, according
Expand Down
8 changes: 4 additions & 4 deletions src/gluonts/model/forecast_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ def __call__(
input_names: List[str],
output_transform: Optional[OutputTransform],
num_samples: Optional[int],
**kwargs
**kwargs,
) -> Iterator[Forecast]:
raise NotImplementedError()

Expand All @@ -111,7 +111,7 @@ def __call__(
input_names: List[str],
output_transform: Optional[OutputTransform],
num_samples: Optional[int],
**kwargs
**kwargs,
) -> Iterator[Forecast]:
for batch in inference_data_loader:
inputs = select(input_names, batch, ignore_missing=True)
Expand Down Expand Up @@ -155,7 +155,7 @@ def __call__(
input_names: List[str],
output_transform: Optional[OutputTransform],
num_samples: Optional[int],
**kwargs
**kwargs,
) -> Iterator[Forecast]:
for batch in inference_data_loader:
inputs = select(input_names, batch, ignore_missing=True)
Expand Down Expand Up @@ -205,7 +205,7 @@ def __call__(
input_names: List[str],
output_transform: Optional[OutputTransform],
num_samples: Optional[int],
**kwargs
**kwargs,
) -> Iterator[Forecast]:
for batch in inference_data_loader:
inputs = select(input_names, batch, ignore_missing=True)
Expand Down
4 changes: 2 additions & 2 deletions src/gluonts/mx/block/regularization.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def __init__(
weight: Optional[float] = None,
batch_axis: int = 1,
time_axis: int = 0,
**kwargs
**kwargs,
):
super().__init__(weight, batch_axis, **kwargs)
self._alpha = alpha
Expand Down Expand Up @@ -121,7 +121,7 @@ def __init__(
weight: Optional[float] = None,
batch_axis: int = 1,
time_axis: int = 0,
**kwargs
**kwargs,
):
super().__init__(weight, batch_axis, **kwargs)
self._beta = beta
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/mx/block/scaler.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ def __init__(
minimum_scale: float = 1e-10,
default_scale: Optional[float] = None,
*args,
**kwargs
**kwargs,
):
super().__init__(*args, **kwargs)
self.minimum_scale = minimum_scale
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/mx/block/sndense.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ def __init__(
dtype="float32",
num_power_iter: int = 1,
ctx: Optional[mx.Context] = None,
**kwargs
**kwargs,
):
super().__init__(**kwargs)
self._coeff = coeff
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/mx/distribution/iresnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def __init__(
coeff: float = 0.9,
use_caching: bool = True,
*args,
**kwargs
**kwargs,
):
super().__init__(*args, **kwargs)
assert len(event_shape) == 1
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/mx/distribution/lds.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def _safe_split(x, num_outputs, axis, squeeze_axis, *args, **kwargs):
num_outputs=num_outputs,
squeeze_axis=squeeze_axis,
*args,
**kwargs
**kwargs,
)
return [x.squeeze(axis=axis)] if squeeze_axis else [x]

Expand Down
8 changes: 4 additions & 4 deletions src/gluonts/nursery/SCott/dataset_tools/algo_clustering.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,14 +232,14 @@ def KMeans_m5_dataset(
{
"target": ts_slice,
"start": unsplit_start,
} # , 'feat_static_cat': train_entry['feat_static_cat']}
)
}
) # , 'feat_static_cat': train_entry['feat_static_cat']}
whole_data.append(
{
"target": ts_slice,
"start": unsplit_start,
} # , 'feat_static_cat': train_entry['feat_static_cat']}
)
}
) # , 'feat_static_cat': train_entry['feat_static_cat']}
sample_id += 1
print(len(whole_data))
ret["group_ratio"] = [len(i) / len(whole_data) for i in dataset_group]
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/nursery/daf/tslib/nn/attention/selfattn.py
Original file line number Diff line number Diff line change
Expand Up @@ -309,7 +309,7 @@ def forward(
value: Tensor,
shape: Tensor,
*,
mask: Optional[BoolTensor] = None
mask: Optional[BoolTensor] = None,
) -> Tensor:
q, k, v = self._compute_qkv(value, shape)
score = self._compute_attn_score(q, k, mask)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -312,7 +312,7 @@ def log_prob(self, x, cond, *args, **kwargs):
cond.reshape(B * T, 1, -1),
time,
*args,
**kwargs
**kwargs,
)

return loss
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def __init__(
num_layers: int,
adj_matrix: Tensor,
use_mlp: bool = True,
**kwargs
**kwargs,
):
super().__init__(**kwargs)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,7 @@ def main(
surrogate[surrogate["name"]]
if surrogate["name"] in surrogate
else {}
)
),
)

# Then, we can create the recommender
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@ def main(
surrogate[surrogate["name"]]
if surrogate["name"] in surrogate
else {}
)
),
)
elif recommender == "optimal":
recommender_args["tracker"] = tracker
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ def main(
input_flags=inputs,
output_normalization=outputs["normalization"],
impute_simulatable=outputs["imputation"],
**(_config[surrogate] if surrogate in _config else {})
**(_config[surrogate] if surrogate in _config else {}),
)

# And evaluate it
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/torch/model/i_transformer/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,7 +232,7 @@ def create_training_data_loader(
data: Dataset,
module: ITransformerLightningModule,
shuffle_buffer_length: Optional[int] = None,
**kwargs
**kwargs,
) -> Iterable:
data = Cyclic(data).stream()
instances = self._create_instance_splitter(module, "training").apply(
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/torch/model/lag_tst/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,7 +225,7 @@ def create_training_data_loader(
data: Dataset,
module: LagTSTLightningModule,
shuffle_buffer_length: Optional[int] = None,
**kwargs
**kwargs,
) -> Iterable:
data = Cyclic(data).stream()
instances = self._create_instance_splitter(module, "training").apply(
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/torch/model/patch_tst/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,7 @@ def create_training_data_loader(
data: Dataset,
module: PatchTSTLightningModule,
shuffle_buffer_length: Optional[int] = None,
**kwargs
**kwargs,
) -> Iterable:
data = Cyclic(data).stream()
instances = self._create_instance_splitter(module, "training").apply(
Expand Down
2 changes: 1 addition & 1 deletion src/gluonts/torch/model/wavenet/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -348,7 +348,7 @@ def create_training_data_loader(
data: Dataset,
module: WaveNetLightningModule,
shuffle_buffer_length: Optional[int] = None,
**kwargs
**kwargs,
) -> Iterable:
data = Cyclic(data).stream()
instances = self._create_instance_splitter("training").apply(
Expand Down
2 changes: 1 addition & 1 deletion test/nursery/sagemaker_sdk/test_entry_point_scripts.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ def test_train_script(dataset_name, custom_dataset):
estimator = estimator_cls.from_hyperparameters(
prediction_length=dataset.metadata.prediction_length,
freq=dataset.metadata.freq,
**hyperparameters
**hyperparameters,
)
serialized = serde.dump_json(estimator)
with open(temp_dir_path / "estimator.json", "w") as estimator_file:
Expand Down

0 comments on commit 61133ef

Please sign in to comment.