-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
repo-sync-2024-06-19T10:45:51+0800 (#72)
- Loading branch information
1 parent
a10a98d
commit 0215a9a
Showing
9 changed files
with
923 additions
and
86 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
# LightGBM预测 | ||
|
||
使用给定的LightGBM模型对数据进行预测。 | ||
|
||
## 组件定义 | ||
|
||
1. 参数 | ||
(1) pred_name: 预测值的列名。 | ||
(2) save_label: 输出结果是否包含标签列,true表示保存。 | ||
(3) label_name: 标签列的名称,默认为“label”。 | ||
(4) save_id: 输出结果是否保存ID列,true表示保存。 | ||
(5) id_name: ID列的名称。 | ||
(6) col_names: 可选,输出指定的列到结果中,默认为空。 | ||
2. 输入:待预测的数据以及LightGBM模型。 | ||
3. 输出:预测结果。 | ||
|
||
```json | ||
{ | ||
"domain": "ml.predict", | ||
"name": "lgbm_predict", | ||
"desc": "Predict using the lgbm model.", | ||
"version": "0.0.1", | ||
"attrs": [ | ||
{ | ||
"name": "pred_name", | ||
"desc": "Column name for predictions.", | ||
"type": "AT_STRING", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": { | ||
"s": "pred" | ||
} | ||
} | ||
}, | ||
{ | ||
"name": "save_label", | ||
"desc": "Whether or not to save real label column into output pred table. If true, input feature_dataset must contain label column.", | ||
"type": "AT_BOOL", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": {} | ||
} | ||
}, | ||
{ | ||
"name": "label_name", | ||
"desc": "Column name for label.", | ||
"type": "AT_STRING", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": { | ||
"s": "label" | ||
} | ||
} | ||
}, | ||
{ | ||
"name": "save_id", | ||
"desc": "Whether to save id column into output pred table. If true, input feature_dataset must contain id column.", | ||
"type": "AT_BOOL", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": {} | ||
} | ||
}, | ||
{ | ||
"name": "id_name", | ||
"desc": "Column name for id.", | ||
"type": "AT_STRING", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": { | ||
"s": "id" | ||
} | ||
} | ||
}, | ||
{ | ||
"name": "col_names", | ||
"desc": "Extra column names into output pred table.", | ||
"type": "AT_STRINGS", | ||
"atomic": { | ||
"list_max_length_inclusive": "-1", | ||
"is_optional": true | ||
} | ||
} | ||
], | ||
"inputs": [ | ||
{ | ||
"name": "feature_dataset", | ||
"desc": "Input feature dataset.", | ||
"types": [ | ||
"sf.table.individual" | ||
], | ||
"attrs": [ | ||
{ | ||
"name": "ids", | ||
"desc": "Id columns.", | ||
"col_max_cnt_inclusive": "1" | ||
}, | ||
{ | ||
"name": "label", | ||
"desc": "Label column.", | ||
"col_max_cnt_inclusive": "1" | ||
} | ||
] | ||
}, | ||
{ | ||
"name": "model", | ||
"desc": "Input model.", | ||
"types": [ | ||
"sf.model.lgbm" | ||
] | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"name": "pred", | ||
"desc": "Output prediction.", | ||
"types": [ | ||
"sf.table.individual" | ||
] | ||
} | ||
] | ||
} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
# LightGBM训练 | ||
|
||
使用LightGBM对数据集进行训练,得到LightGBM模型,支持二分类和线性回归。 | ||
|
||
## 组件定义 | ||
|
||
```json | ||
{ | ||
"domain": "ml.train", | ||
"name": "lgbm_train", | ||
"desc": "LightGBM train component for individual dataset.", | ||
"version": "0.0.1", | ||
"attrs": [ | ||
{ | ||
"name": "n_estimators", | ||
"desc": "Number of boosted trees to fit.", | ||
"type": "AT_INT", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": { | ||
"i64": "10" | ||
}, | ||
"lower_bound_enabled": true, | ||
"lower_bound": { | ||
"i64": "1" | ||
}, | ||
"lower_bound_inclusive": true, | ||
"upper_bound_enabled": true, | ||
"upper_bound": { | ||
"i64": "1024" | ||
}, | ||
"upper_bound_inclusive": true | ||
} | ||
}, | ||
{ | ||
"name": "objective", | ||
"desc": "Specify the learning objective.", | ||
"type": "AT_STRING", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": { | ||
"s": "binary" | ||
}, | ||
"allowed_values": { | ||
"ss": [ | ||
"regression", | ||
"binary" | ||
] | ||
} | ||
} | ||
}, | ||
{ | ||
"name": "boosting_type", | ||
"desc": "Boosting type.", | ||
"type": "AT_STRING", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": { | ||
"s": "gbdt" | ||
}, | ||
"allowed_values": { | ||
"ss": [ | ||
"gbdt", | ||
"rf", | ||
"dart" | ||
] | ||
} | ||
} | ||
}, | ||
{ | ||
"name": "learning_rate", | ||
"desc": "Learning rate.", | ||
"type": "AT_FLOAT", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": { | ||
"f": 0.1 | ||
}, | ||
"lower_bound_enabled": true, | ||
"lower_bound": {}, | ||
"upper_bound_enabled": true, | ||
"upper_bound": { | ||
"f": 1 | ||
}, | ||
"upper_bound_inclusive": true | ||
} | ||
}, | ||
{ | ||
"name": "num_leaves", | ||
"desc": "Max number of leaves in one tree.", | ||
"type": "AT_INT", | ||
"atomic": { | ||
"is_optional": true, | ||
"default_value": { | ||
"i64": "31" | ||
}, | ||
"lower_bound_enabled": true, | ||
"lower_bound": { | ||
"i64": "2" | ||
}, | ||
"lower_bound_inclusive": true, | ||
"upper_bound_enabled": true, | ||
"upper_bound": { | ||
"i64": "1024" | ||
}, | ||
"upper_bound_inclusive": true | ||
} | ||
} | ||
], | ||
"inputs": [ | ||
{ | ||
"name": "train_dataset", | ||
"desc": "Input table.", | ||
"types": [ | ||
"sf.table.individual" | ||
], | ||
"attrs": [ | ||
{ | ||
"name": "ids", | ||
"desc": "Id columns will not be trained." | ||
}, | ||
{ | ||
"name": "label", | ||
"desc": "Label column.", | ||
"col_min_cnt_inclusive": "1", | ||
"col_max_cnt_inclusive": "1" | ||
} | ||
] | ||
} | ||
], | ||
"outputs": [ | ||
{ | ||
"name": "output_model", | ||
"desc": "Output model.", | ||
"types": [ | ||
"sf.model.lgbm" | ||
] | ||
} | ||
] | ||
} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
核心功能 | ||
架构设计 | ||
======================== | ||
想了解TrustedFlow原理和功能,欢迎阅读下列文章! | ||
|
||
|
Oops, something went wrong.