A powerful local AI workflow system with multi-model support and visual workflow orchestration.
Category | Feature | Description |
---|---|---|
AI Models | Multi-Model Support | Ollama local models and external APIs (DeepSeek, OpenRouter, Tongyi) |
Advanced AI | π¨ Multimodal Support | Image analysis and text+image conversations with Gemini 2.5 Pro |
π€ Reasoning Display | AI thinking process visualization (supports DeepSeek R1) | |
π¬ Deep Research | Six-stage research workflow with intelligent analysis | |
Tools & Search | π Smart Web Search | Multi-engine support (SerpAPI, DuckDuckGo, Bocha AI, etc.) |
Function Tools | Command line execution, web search, financial data tools | |
Interface | β‘ Streaming Output | Real-time AI response display for better interaction |
Unified CLI | Simple command interface with multiple operation modes | |
Desktop Application | Native desktop app with PyWebView integration | |
Workflow | VertexFlow Engine | Visual workflow orchestration with drag-and-drop nodes |
RAG System | Local Retrieval-Augmented Generation with document processing | |
Configuration | Smart Configuration | Simplified configuration system with automatic setup |
Document Processing | Support for TXT, MD, PDF, DOCX formats |
- Python 3.9+
- Ollama (for local models) - Download here
# Install via pip (recommended)
pip install vertex
# Or install from source
git clone https://github.com/ashione/vertex.git
cd vertex
pip install -e .
# Quick setup - Initialize configuration
vertex config init
# Interactive configuration wizard
vertex config
# Check configuration status
vertex config check
# Standard chat mode (default)
vertex
# Advanced workflow chat with function tools and reasoning
python -m vertex_flow.src.workflow_app --port 7864
# Deep Research analysis tool
vertex deepresearch
# or short form
vertex dr
# VertexFlow workflow mode
vertex workflow
# RAG document Q&A mode
vertex rag --interactive
# Desktop mode
vertex --desktop
Access the Web interface at http://localhost:7860 (or http://localhost:7864 for workflow app)
# Standard mode
vertex # Launch chat interface
vertex run --port 8080 # Custom port
# Advanced workflow chat mode
python -m vertex_flow.src.workflow_app --port 7864 # With function tools, web search, reasoning
# Deep Research mode
vertex deepresearch # Start deep research analysis tool
vertex dr --topic "AI trends" # Direct research from command line
vertex dr --port 8080 # Custom port for web interface
# Workflow mode
vertex workflow # Visual workflow editor
vertex workflow --port 8080
# Configuration management
vertex config # Interactive setup
vertex config init # Quick initialization
vertex config check # Check status
vertex config reset # Reset to template
# RAG system
vertex rag --interactive # Interactive Q&A
vertex rag --query "question" # Direct query
vertex rag --directory /path/to/docs # Index documents
# Desktop mode
vertex --desktop # Desktop application
vertex workflow --desktop # Desktop workflow editor
The Deep Research tool provides comprehensive analysis through a six-stage workflow:
- Topic Analysis π - Initial topic understanding and scope definition
- Research Planning π - Strategic research approach and methodology
- Information Collection π - Comprehensive data gathering and source compilation
- Deep Analysis π¬ - In-depth examination and critical evaluation
- Cross Validation β - Verification and fact-checking across sources
- Summary Report π - Professional research report generation
# Deep Research via API
from vertex_flow.src.deep_research_app import DeepResearchApp
app = DeepResearchApp()
# Configure research parameters and execute
from vertex_flow.workflow.unified_rag_workflow import UnifiedRAGSystem
# Create RAG system
rag_system = UnifiedRAGSystem()
# Index documents
documents = ["document1.txt", "document2.pdf"]
rag_system.index_documents(documents)
# Query the knowledge base
answer = rag_system.query("What is the main topic?")
print(answer)
# Access various function tools through service
from vertex_flow.workflow.service import VertexFlowService
service = VertexFlowService()
cmd_tool = service.get_command_line_tool() # Command execution
web_tool = service.get_web_search_tool() # Smart web search (SerpAPI/DuckDuckGo/Bocha etc.)
finance_tool = service.get_finance_tool() # Financial data retrieval
# Tools integrate seamlessly with AI workflows, supporting streaming and reasoning
from vertex_flow.workflow.vertex.vertex import SourceVertex
from vertex_flow.workflow.workflow import Workflow
from vertex_flow.workflow.context import WorkflowContext
def source_func(inputs, context):
return {"text": "Hello, Vertex Flow!"}
context = WorkflowContext()
workflow = Workflow(context)
source = SourceVertex(id="source", task=source_func)
workflow.add_vertex(source)
workflow.execute_workflow()
After installing the vertex package, use these commands for quick setup:
# Initialize configuration file
vertex config init
# Interactive configuration wizard
vertex config
# Check configuration status
vertex config check
# Reset configuration
vertex config reset
Configuration file is located at ~/.vertex/config/llm.yml
. You can edit this file directly.
Set API keys for external models:
export llm_deepseek_sk="your-deepseek-key"
export llm_openrouter_sk="your-openrouter-key"
export llm_tongyi_sk="your-tongyi-key"
export web_search_serpapi_api_key="your-serpapi-key"
export web_search_bocha_sk="your-bocha-key"
- User configuration file:
~/.vertex/config/llm.yml
- Environment variables
- Package default configuration
- Complete CLI Usage Guide - Full CLI command reference and MCP integration
- Desktop Application Guide - Desktop app usage
- Workflow Chat App Guide - Advanced chat with function tools and reasoning
- π¨ Multimodal Features Guide - Image analysis and text+image conversations
- π Web Search Configuration - Multi-engine search setup
- MCP Integration Guide - Model Context Protocol support
- Troubleshooting Guide - Common issues and solutions
- Function Tools Guide - Complete function tools reference
- Workflow Chain Calling - Chain workflow execution
- RAG System Overview - Retrieval-Augmented Generation
- Document Update Mechanism - Incremental updates and deduplication
- Deduplication Features - Smart document deduplication
- Configuration Unification - Unified configuration system
- Publishing Guide - Package publishing and version management
- Pre-commit Checks - Code quality and automated checks
# Function tools examples
cd vertex_flow/examples
python command_line_example.py # Command line tool
python web_search_example.py # Web search tool
python finance_example.py # Finance tool
python rag_example.py # RAG system
python deduplication_demo.py # Deduplication
# Run pre-commit checks
./scripts/precommit.sh
# Version management
python scripts/version_bump.py
See LICENSE file for details.